AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (599.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

A perspective on energy chemistry of low-temperature lithium metal batteries

He Liu1,2Xinbing Cheng1,3( )Chong Yan1,4Zeheng Li1Chenzi Zhao1,5Rong Xiang6Hong Yuan7Jiaqi Huang7( )Elena Kuzmina8Elena Karaseva8Vladimir Kolosnitsyn8Qiang Zhang1 ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Ufa Institute of Chemistry UFRC RAS, Ufa 450054, Russia
Show Author Information

Abstract

Dendrite growth of lithium (Li) metal anode severely hinders its practical application, while the situation becomes more serious at low temperatures due to the sluggish kinetics of Li-ion diffusion. This perspective is intended to clearly understand the energy chemistry of low-temperature Li metal batteries (LMBs). The low-temperature chemistries between LMBs and traditional Li-ion batteries are firstly compared to figure out the features of the low-temperature LMBs. Li deposition behaviors at low temperatures are then discussed concerning the variation in Li-ion diffusion behaviors and solid electrolyte interphase (SEI) features. Subsequently, the strategies to enhance the diffusion kinetics of Li ions and suppress dendrite growth including designing electrolytes and electrode/electrolyte interfaces are analyzed. Finally, conclusions and outlooks are drawn to shed lights on the future design of high-performance low-temperature LMBs.

References

1

Wang, Y. Y., Wang, Z. J., Zhao, L., Fan, Q. N., Zeng, X. H., Liu, S. L., Pang, W. K., He, Y. B., Guo, Z. P. (2021). Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Advanced Materials, 33: 2008133.

2

Liu, H., Cheng, X. B., Xu, R., Zhang, X. Q., Yan, C., Huang, J. Q., Zhang, Q. (2019). Plating/stripping behavior of actual lithium metal anode. Advanced Energy Materials, 9: 1902254.

3

Chen, X. R., Zhao, B. C., Yan, C., Zhang, Q. (2021). Review on Li deposition in working batteries: From nucleation to early growth. Advanced Materials, 33: 2004128.

4

Wu, J. Y., Rao, Z. X., Liu, X. T., Shen, Y., Fang, C., Yuan, L. X., Li, Z., Zhang, W. X., Xie, X. L., Huang, Y. H. (2021). Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes. Advanced Materials, 33: 2007428.

5

Lin, X. D., Gu, Y., Shen, X. R., Wang, W. W., Hong, Y. H., Wu, Q. H., Zhou, Z. Y., Wu, D. Y., Chang, J. K., Zheng, M. S., et al. (2021). Correction: An oxygen-blocking oriented multifunctional solid–electrolyte interphase as a protective layer for a lithium metal anode in lithium–oxygen batteries. Energy & Environmental Science, 14: 1439–1448.

6

Qian, K., Liu, Y. Z., Zhou, X. W., Gosztola, D. J., Nguyen, H., Li, T. (2021). Decoupling the degradation factors of Ni-rich NMC/Li metal batteries using concentrated electrolytes. Energy Storage Materials, 41: 222–229.

7

Wang, H. P., He, J., Liu, J. D., Qi, S. H., Wu, M. G., Wen, J., Chen, Y. N., Feng, Y. Z., Ma, J. M. (2021). Electrolytes enriched by crown ethers for lithium metal batteries. Advanced Functional Materials, 31: 2002578.

8

Liu, J., Yuan, H., Tao, X. Y., Liang, Y. R., Yang, S. J., Huang, J. Q., Yuan, T. Q., Titirici, M. M., Zhang, Q. (2020). Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat, 2: e12019.

9

Chen, W. P., Duan, H., Shi, J. L., Qian, Y. M., Wan, J., Zhang, X. D., Sheng, H., Guan, B., Wen, R., Yin, Y. X., et al. (2021). Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. Journal of the American Chemical Society, 143: 5717–5726.

10

Shen, L. D., Liu, X., Dong, J., Zhang, Y. T., Xu, C. X., Lai, C., Zhang, S. Q. (2021). Functional lithiophilic polymer modified separator for dendrite-free and pulverization-free lithium metal batteries. Journal of Energy Chemistry, 52: 262–268.

11

Liu, H., Cheng, X. B., Huang, J. Q., Yuan, H., Lu, Y., Yan, C., Zhu, G. L., Xu, R., Zhao, C. Z., Hou, L. P., et al. (2020). Controlling dendrite growth in solid-state electrolytes. ACS Energy Letters, 5: 833–843.

12

Wu, X. X., Zheng, Y. J., Li, W. B., Liu, Y. Y., Zhang, Y., Li, Y. J., Li, C. L. (2021). Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Materials, 41: 436–447.

13

Xu, X. Q., Xu, R., Cheng, X. B., Xiao, Y., Peng, H. J., Yuan, H., Liu, F. Y. (2021). A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 56: 391–394.

14

Yang, S. J., Yao, N., Xu, X. Q., Jiang, F. N., Chen, X., Liu, H., Yuan, H., Huang, J. Q., Cheng, X. B. (2021). Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A, 9: 19664–19668.

15

Li, F., He, J., Liu, J. D., Wu, M. G., Hou, Y. Y., Wang, H. P., Qi, S. H., Liu, Q. H., Hu, J. W., Ma, J. M. (2021). Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angewandte Chemie International Edition, 60: 6600–6608.

16

Huo, H., Gao, J., Zhao, N., Zhang, D., Holmes, N. G., Li, X., Sun, Y., Fu, J., Li, R., Guo, X., et al. (2021). A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nature Communications, 12: 176.

17

Liu, H., Cheng, X. B., Zhang, R., Shi, P., Shen, X., Chen, X. R., Li, T., Huang, J. Q., Zhang, Q. (2020). Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries. Transactions of Tianjin University, 26: 127–134.

18

Liu, H., Li, T., Xu, X. Q., Shi, P., Zhang, X. Q., Xu, R., Cheng, X. B., Huang, J. Q. (2021). Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 37: 152–158.

19

Zhu, G. L., Wen, K. C., Lv, W. Q., Zhou, X. Z., Liang, Y. C., Yang, F., Chen, Z. L., Zou, M. D., Li, J. C., Zhang, Y. Q., et al. (2015). Materials insights into low-temperature performances of lithium-ion batteries. Journal of Power Sources, 300: 29–40.

20

Zhao, C. X., Liu, J. N., Yao, N., Wang, J., Ren, D., Chen, X., Li, B. Q., Zhang, Q. (2021). Can aqueous zinc–air batteries work at sub-zero temperatures. Angewandte Chemie International Edition, 60: 15281–15285.

21

Gupta, A., Manthiram, A. (2020). Designing advanced lithium-based batteries for low-temperature conditions. Advanced Energy Materials, 10: 2001972.

22

Liang, Y. R., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W. C., Huang, J. Q., Yu, D. S., Liu, Y. L., Titirici, M. M., Chueh, Y. L., et al. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1: 6–32.

23

Kong, L., Tang, C., Peng, H. J., Huang, J. Q., Zhang, Q. (2020). Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 1: e1007.

24

Cheng, X. B., Liu, H., Yuan, H., Peng, H. J., Tang, C., Huang, J. Q., Zhang, Q. (2021). A perspective on sustainable energy materials for lithium batteries. SusMat, 1: 38–50.

25

Dong, X. L., Wang, Y. G., Xia, Y. Y. (2021). Promoting rechargeable batteries operated at low temperature. Accounts of Chemical Research, 54: 3883–3894.

26

Wang, C. Y., Zhang, G., Ge, S., Xu, T., Ji, Y., Yang, X. G., Leng, Y. (2016). Lithium-ion battery structure that self-heats at low temperatures. Nature, 529: 515–518.

27

Xu, X. Y., Liu, Y. Y., Hwang, J. Y., Kapitanova, O. O., Song, Z. X., Sun, Y. K., Matic, A., Xiong, S. Z. (2020). Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Advanced Energy Materials, 10: 2002390.

28

Han, Y. H., Jie, Y. L., Huang, F. Y., Chen, Y. W., Lei, Z. W., Zhang, G. Q., Ren, X. D., Qin, L. J., Cao, R. G., Jiao, S. H. (2019). Enabling stable lithium metal anode through electrochemical kinetics manipulation. Advanced Functional Materials, 29: 1904629.

29

Zhu, F. L., Bao, H. F., Wu, X. S., Tao, Y. L., Qin, C., Su, Z. M., Kang, Z. H. (2019). High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Applied Materials & Interfaces, 11: 43206–43213.

30

Liu, H., Cheng, X. B., Jin, Z. H., Zhang, R., Wang, G. X., Chen, L. Q., Liu, Q. B., Huang, J. Q., Zhang, Q. (2019). Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 1: 100003.

31

Love, C. T., Baturina, O. A., Swider-Lyons, K. E. (2015). Observation of lithium dendrites at ambient temperature and below. ECS Electrochemistry Letters, 4: A24–A27.

32

Zhao, Q., Liu, X., Zheng, J. X., Deng, Y., Warren, A., Zhang, Q. Y., Archer, L. (2020). Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 117: 26053–26060.

33

Cui, S. H., Wei, Y., Liu, T. C., Deng, W. J., Hu, Z. X., Su, Y. T., Li, H., Li, M. F., Guo, H., Duan, Y. D., et al. (2016). Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Advanced Energy Materials, 6: 1501309.

34

Tang, Z. F., Wang, S., Liao, J. Y., Wang, S., He, X. D., Pan, B. C., He, H. Y., Chen, C. H. (2019). Facilitating lithium-ion diffusion in layered cathode materials by introducing Li+/Ni2+ antisite defects for high-rate Li-ion batteries. Research, 2019: 2198906.

35

Betz, J., Brinkmann, J. P., Nölle, R., Lürenbaum, C., Kolek, M., Stan, M. C., Winter, M., Placke, T. (2019). Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Advanced Energy Materials, 9: 1900574.

36

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104: 4303–4418.

37

Xu, K., Lam, Y., Zhang, S. S., Jow, T. R., Curtis, T. B. (2007). Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. The Journal of Physical Chemistry C, 111: 7411–7421.

38

Li, Q. Y., Lu, D. P., Zheng, J. M., Jiao, S. H., Luo, L. L., Wang, C. M., Xu, K., Zhang, J. G., Xu, W. (2017). Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Applied Materials & Interfaces, 9: 42761–42768.

39

Gupta, A., Bhargav, A., Jones, J. P., Bugga, R. V., Manthiram, A. (2020). Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries. Chemistry of Materials: A Publication of the American Chemical Society, 32: 2070–2077.

40

Thenuwara, A. C., Shetty, P. P., Kondekar, N., Sandoval, S. E., Cavallaro, K., May, R., Yang, C. T., Marbella, L. E., Qi, Y., McDowell, M. T. (2020). Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Letters, 5: 2411–2420.

41

Thenuwara, A. C., Shetty, P. P., McDowell, M. T. (2019). Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures. Nano Letters, 19: 8664–8672.

42

Li, B. Q., Kong, L., Zhao, C. X., Jin, Q., Chen, X., Peng, H. J., Qin, J. L., Chen, J. X., Yuan, H., Zhang, Q., et al. (2019). Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat, 1: 533–541.

43

Zhao, C. X., Chen, W. J., Zhao, M., Song, Y. W., Liu, J. N., Li, B. Q., Yuan, T. Q., Chen, C. M., Zhang, Q., Huang, J. Q. (2021). Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat, 3: e12066.

44

Pathak, R., Chen, K., Gurung, A., Reza, K. M., Bahrami, B., Pokharel, J., Baniya, A., He, W., Wu, F., Zhou, Y., et al. (2020). Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 11: 93.

45

Chen, J., Fan, X., Li, Q., Yang, H., Khoshi, M. R., Xu, Y., Hwang, S., Chen, L., Ji, X., Yang, C., et al. (2020). Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 5: 386–397.

46

Zhao, C. Z., Duan, H., Huang, J. Q., Zhang, J., Zhang, Q., Guo, Y. G., Wan, L. J. (2019). Designing solid-state interfaces on lithium-metal anodes: A review. Science China Chemistry, 62: 1286–1299.

47

Yan, C., Yuan, H., Park, H. S., Huang, J. Q. (2020). Perspective on the critical role of interface for advanced batteries. Journal of Energy Chemistry, 47: 217–220.

48

Yang, Q. F., Li, C. L. (2018). Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Materials, 14: 100–117.

49

Yan, K., Wang, J. Y., Zhao, S. Q., Zhou, D., Sun, B., Cui, Y., Wang, G. X. (2019). Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angewandte Chemie International Edition, 58: 11364–11368.

50

Wang, J. Y., Huang, W., Pei, A., Li, Y. Z., Shi, F. F., Yu, X. Y., Cui, Y. (2019). Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nature Energy, 4: 664–670.

51
Ishikawa, M., Tasaka, Y., Yoshimoto, N., Morita, M. (2001). Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: An effect of electrolyte temperature. Journal of Power Sources, 97–98: 262–264.https://doi.org/10.1016/S0378-7753(01)00621-8
52

Xu, K., von Cresce, A., Lee, U. (2010). Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir: the ACS Journal of Surfaces and Colloids, 26: 11538–11543.

53

Yan, C., Yao, Y. X., Cai, W. L., Xu, L., Kaskel, S., Park, H. S., Huang, J. Q. (2020). The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries. Journal of Energy Chemistry, 49: 335–338.

54

Akolkar, R. (2014). Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 246: 84–89.

55

Lushta, V., Dietzel, D., Roling, B., Schirmeisen, A. (2019). Nanoscale characterization of ion mobility by temperature-controlled Li-nanoparticle growth. ACS Applied Materials & Interfaces, 11: 5476–5483.

56

Zhai, P. B., Liu, L. X., Gu, X. K., Wang, T. S., Gong, Y. J. (2020). Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 10: 2001257.

57

Jow, T. R., Delp, S. A., Allen, J. L., Jones, J. P., Smart, M. C. (2018). Factors limiting Li+ charge transfer kinetics in Li-ion batteries. Journal of the Electrochemical Society, 165: A361–A367.

58

Liu, T., Lin, L., Bi, X., Tian, L., Yang, K., Liu, J., Li, M., Chen, Z., Lu, J., Amine, K., et al. (2019). In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology, 14: 50–56.

59

Mei, W. X., Jiang, L. H., Liang, C., Sun, J. H., Wang, Q. S. (2021). Understanding of Li-plating on graphite electrode: Detection, quantification and mechanism revelation. Energy Storage Materials, 41: 209–221.

60

Cai, W. L., Yao, Y. X., Zhu, G. L., Yan, C., Jiang, L. L., He, C. X., Huang, J. Q., Zhang, Q. (2020). A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 49: 3806–3833.

61

Wang, W., Liao, C., Liew, K. M., Chen, Z. H., Song, L., Kan, Y. C., Hu, Y. (2019). A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. Journal of Materials Chemistry A, 7: 6859–6868.

62

Huo, H. Y., Chen, Y., Li, R. Y., Zhao, N., Luo, J., Pereira da Silva, J. G., Mücke, R., Kaghazchi, P., Guo, X. X., Sun, X. L. (2020). Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy & Environmental Science, 13: 127–134.

63

Cheng, X. B., Zhao, C. Z., Yao, Y. X., Liu, H., Zhang, Q. (2019). Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem, 5: 74–96.

64

Shen, X., Zhang, R., Chen, X., Cheng, X. B., Li, X. Y., Zhang, Q. (2020). The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength. Advanced Energy Materials, 10: 1903645.

65

Piao, N., Ji, X., Xu, H., Fan, X. L., Chen, L., Liu, S. F., Garaga, M. N., Greenbaum, S. G., Wang, L., Wang, C. S., et al. (2020). Countersolvent electrolytes for lithium-metal batteries. Advanced Energy Materials, 10: 1903568.

66

Motoyama, M., Ejiri, M., Iriyama, Y. (2015). Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. Journal of the Electrochemical Society, 162: A7067–A7071.

67

Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V., Greer, J. R. (2017). Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 114: 57–61.

68
Cai, G. R., Holoubek, J., Xia, D. W., Li, M. Q., Yin, Y. J., Xing, X., Liu, P., Chen, Z. (2020). An ester electrolyte for lithium-sulfur batteries capable of ultra-low temperature cycling. Chemical Communications (Cambridge, England), 56: 9114–9117.https://doi.org/10.1039/D0CC03798B
69

Holoubek, J., Liu, H., Wu, Z., Yin, Y., Xing, X., Cai, G., Yu, S., Zhou, H., Pascal, T. A., Chen, Z., et al. (2021). Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy, 6: 303–313.

70

Plichta, E. J., Behl, W. K. (2000). A low-temperature electrolyte for lithium and lithium-ion batteries. Journal of Power Sources, 88: 192–196.

71

Li, Q. Y., Jiao, S. H., Luo, L. L., Ding, M. S., Zheng, J. M., Cartmell, S. S., Wang, C. M., Xu, K., Zhang, J. G., Xu, W. (2017). Wide-temperature electrolytes for lithium-ion batteries. ACS Applied Materials & Interfaces, 9: 18826–18835.

72

Shangguan, X. H., Xu, G. J., Cui, Z. L., Wang, Q. L., Du, X. F., Chen, K., Huang, S. Q., Jia, G. F., Li, F. Q., Wang, X., et al. (2019). Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries. Small, 15: 1900269.

73

Dong, X. L., Lin, Y. X., Li, P. L., Ma, Y. Y., Huang, J. H., Bin, D., Wang, Y. G., Qi, Y., Xia, Y. Y. (2019). High-energy rechargeable metallic lithium battery at −70 ºC enabled by a cosolvent electrolyte. Angewandte Chemie International Edition, 58: 5623–5627.

74

Fan, X., Ji, X., Chen, L., Chen, J., Deng, T., Han, F., Yue, J., Piao, N., Wang, R., Zhou, X., et al. (2019). All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 4: 882–890.

75

Ren, X. D., Chen, S. R., Lee, H., Mei, D. H., Engelhard, M. H., Burton, S. D., Zhao, W. G., Zheng, J. M., Li, Q. Y., Ding, M. S., et al. (2018). Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 4: 1877–1892.

76

Rustomji, C. S., Yang, Y., Kim, T. K., Mac, J., Kim, Y. J., Caldwell, E., Chung, H., Meng, Y. S. (2017). Liquefied gas electrolytes for electrochemical energy storage devices. Science, 356: eaal4263.

77

Yang, Y., Yin, Y. J., Davies, D. M., Zhang, M. H., Mayer, M., Zhang, Y. H., Sablina, E. S., Wang, S., Lee, J. Z., Borodin, O., et al. (2020). Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy & Environmental Science, 13: 2209–2219.

78

Yao, Y. X., Chen, X., Yan, C., Zhang, X. Q., Cai, W. L., Huang, J. Q., Zhang, Q. (2021). Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angewandte Chemie International Edition, 60: 4090–4097.

79

Hu, D. Z., Chen, G., Tian, J., Li, N., Chen, L., Su, Y. F., Song, T. L., Lu, Y., Cao, D. Y., Chen, S., et al. (2021). Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. Journal of Energy Chemistry, 60: 104–110.

80

Li, S., Li, Z. D., Huai, L. Y., Ma, M. M., Luo, K. L., Chen, J. H., Wang, D. Y., Peng, Z. (2021). A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes. Journal of Energy Chemistry, 62: 179–190.

81

Jiang, L. L., Yan, C., Yao, Y. X., Cai, W. L., Huang, J. Q., Zhang, Q. (2021). Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angewandte Chemie International Edition, 60: 3402–3406.

82

Meng, J. W., Lei, M., Lai, C. Z., Wu, Q. P., Liu, Y. Y., Li, C. L. (2021). Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angewandte Chemie International Edition, 60: 23256–23266.

83

Jiang, G. X., Li, F., Wang, H. P., Wu, M. G., Qi, S. H., Liu, X. H., Yang, S. C., Ma, J. M. (2021). Perspective on high-concentration electrolytes for lithium metal batteries. Small Structures, 2: 2000122.

84

Liu, Y., Zhai, Y. P., Xia, Y. Y., Li, W., Zhao, D. Y. (2021). Recent progress of porous materials in lithium-metal batteries. Small Structures, 2: 2000118.

85

Gao, Y., Rojas, T., Wang, K., Liu, S., Wang, D. W., Chen, T. H., Wang, H. Y., Ngo, A. T., Wang, D. H. (2020). Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nature Energy, 5: 534–542.

86

Adair, K. R., Banis, M. N., Zhao, Y., Bond, T., Li, R. Y., Sun, X. L. (2020). Temperature-dependent chemical and physical microstructure of Li metal anodes revealed through synchrotron-based imaging techniques. Advanced Materials, 32: 2002550.

87

Maraschky, A., Akolkar, R. (2020). Temperature dependence of dendritic lithium electrodeposition: A mechanistic study of the role of transport limitations within the SEI. Journal of the Electrochemical Society, 167: 062503.

88

Xiao, P. T., Luo, R. P., Piao, Z. H., Li, C., Wang, J. X., Yu, K., Zhou, G. M., Cheng, H. M. (2021). High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry. ACS Energy Letters, 6: 3170–3179.

89

Holoubek, J., Yu, M. Y., Yu, S. C., Li, M. Q., Wu, Z. H., Xia, D. W., Bhaladhare, P., Gonzalez, M. S., Pascal, T. A., Liu, P., et al. (2020). An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Letters, 5: 1438–1447.

90

Gao, Y., Wang, D. W., Shin, Y. K., Yan, Z. F., Han, Z., Wang, K., Hossain, M. J., Shen, S. L., AlZahrani, A., van Duin, A. C. T., et al. (2020). Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel. Proceedings of the National Academy of Sciences of the United States of America, 117: 30135–30141.

91

Yan, C., Jiang, L. L., Yao, Y. X., Lu, Y., Huang, J. Q., Zhang, Q. (2021). Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries. Angewandte Chemie International Edition, 60: 8521–8525.

92

Cai, W. L., Yan, C., Yao, Y. X., Xu, L., Chen, X. R., Huang, J. Q., Zhang, Q. (2021). The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angewandte Chemie International Edition, 60: 13007–13012.

93

Shen, X., Cheng, X. B., Shi, P., Huang, J. Q., Zhang, X. Q., Yan, C., Li, T., Zhang, Q. (2019). Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. Journal of Energy Chemistry, 37: 29–34.

94

Ding, J. F., Xu, R., Yan, C., Li, B. Q., Yuan, H., Huang, J. Q. (2021). A review on the failure and regulation of solid electrolyte interphase in lithium batteries. Journal of Energy Chemistry, 59: 306–319.

95

Yao, Y. X., Zhang, X. Q., Li, B. Q., Yan, C., Chen, P. Y., Huang, J. Q., Zhang, Q. (2020). A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat, 2: 379–388.

96

Li, T., Zhang, X. Q., Yao, N., Yao, Y. X., Hou, L. P., Chen, X., Zhou, M. Y., Huang, J. Q., Zhang, Q. (2021). Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition, 60: 22683–22687.

97

Shen, X., Zhang, R., Wang, S. H., Chen, X., Zhao, C., Kuzmina, E., Karaseva, E., Kolosnitsyn, V., Zhang, Q. (2021). The dynamic evolution of aggregated lithium dendrites in lithium metal batteries. Chinese Journal of Chemical Engineering, 37: 137–143.

98

Zhang, Q. K., Liu, S., Lu, Y. T., Xing, L. D., Li, W. S. (2021). Artificial interphases enable dendrite-free Li-metal anodes. Journal of Energy Chemistry, 58: 198–206.

99

Xu, R., Cheng, X. B., Yan, C., Zhang, X. Q., Xiao, Y., Zhao, C. Z., Huang, J. Q., Zhang, Q. (2019). Artificial interphases for highly stable lithium metal anode. Matter, 1: 317–344.

100

Chen, X. R., Yan, C., Ding, J. F., Peng, H. J., Zhang, Q. (2021). New insights into “dead lithium” during stripping in lithium metal batteries. Journal of Energy Chemistry, 62: 289–294.

101

Wei, C. L., Tan, L. W., Tao, Y., An, Y. L., Tian, Y., Jiang, H. Y., Feng, J. K., Qian, Y. T. (2021). Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Materials, 34: 12–21.

102

Zeng, J. K., Liu, Q. T., Jia, D. Y., Liu, R. L., Liu, S. H., Zheng, B. N., Zhu, Y. L., Fu, R. W., Wu, D. C. (2021). A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries. Energy Storage Materials, 41: 697–702.

103
Shen, X., Zhang, R., Shi, P., Chen, X., Zhang, Q. (2021). How does external pressure shape Li dendrites in Li metal batteries? Advanced Energy Materials, 11: 2003416.
104

Wang J, Yang M, Zou G, Liu D, Peng Q. (2021). Lithiation MXene derivative skeletons for wide-temperature lithium metal anodes. Advanced Functional Materials, 31: 2101180.

105

Rashad, M., Asif, M. (2021). Understanding the low temperature electrochemistry of magnesium-lithium hybrid ion battery in all-phenyl-complex solutions. Journal of Energy Chemistry, 56: 383–390.

106

Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G., Janek, J. (2019). Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Advanced Energy Materials, 9: 1902568.

107

Lu, Y., Zhao, C. Z., Zhang, R., Yuan, H., Hou, L. P., Fu, Z. H., Chen, X., Huang, J. Q., Zhang, Q. (2021). The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 7: eabi5520.

108

García, G., Dieckhöfer, S., Schuhmann, W., Ventosa, E. (2018). Exceeding 6500 cycles for LiFePO4/Li metal batteries through understanding pulsed charging protocols. Journal of Materials Chemistry A, 6: 4746–4751.

109

Li, Q., Tan, S., Li, L., Lu, Y., He, Y. (2017). Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries. Science Advances, 3: e1701246.

110

Hope, M. A., Rinkel, B. L. D., Gunnarsdóttir, A. B., Märker, K., Menkin, S., Paul, S., Sergeyev, I. V., Grey, C. P. (2020). Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nature Communications, 11: 2224.

iEnergy
Pages 72-81
Cite this article:
Liu H, Cheng X, Yan C, et al. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72-81. https://doi.org/10.23919/IEN.2022.0003

2025

Views

171

Downloads

21

Crossref

17

Scopus

Altmetrics

Received: 24 December 2021
Revised: 02 February 2022
Accepted: 21 February 2022
Published: 25 March 2022
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return