Journal Home > Volume 1 , issue 1

Simultaneously imposed challenges of high-voltage insulation, high dv/dt, high-switching frequency, fast protection, and thermal management associated with the adoption of 10 kV SiC MOSFET, often pose nearly insurmountable barriers to potential users, undoubtedly hindering their penetration in medium-voltage (MV) power conversion. Key novel technologies such as enhanced gate-driver, auxiliary power supply network, PCB planar dc-bus, and high-density inductor are presented, enabling the SiC-based designs in modular MV converters, overcoming aforementioned challenges. However, purely substituting SiC design instead of Si-based ones in modular MV converters, would expectedly yield only limited gains. Therefore, to further elevate SiC-based designs, novel high-bandwidth control strategies such as switching-cycle control (SCC) and integrated capacitor-blocked transistor (ICBT), as well as high-performance/high-bandwidth communication network are developed. All these technologies combined, overcome barriers posed by state-of-the-art Si designs and unlock system level benefits such as very high power density, high-efficiency, fast dynamic response, unrestricted line frequency operation, and improved power quality, all demonstrated throughout this paper.


menu
Abstract
Full text
Outline
About this article

Design of a 10 kV SiC MOSFET-based high-density, high-efficiency, modular medium-voltage power converter

Show Author's information Slavko Mocevic1( )Jianghui Yu1Boran Fan1Keyao Sun1Yue Xu2Joshua Stewart1Yu Rong1He Song1Vladimir Mitrovic1Ning Yan1Jun Wang3Igor Cvetkovic1Rolando Burgos1Dushan Boroyevich1Christina DiMarino1Dong Dong1Jayesh Kumar Motwani1Richard Zhang1
Center for Power Electronics Systems (CPES), Bradley Departement of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
Center for Electromechanics (CEM), The University of Texas at Austin, Austin, TX 78758, USA
Department of Electrical and Computer Engineering at the University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

Simultaneously imposed challenges of high-voltage insulation, high dv/dt, high-switching frequency, fast protection, and thermal management associated with the adoption of 10 kV SiC MOSFET, often pose nearly insurmountable barriers to potential users, undoubtedly hindering their penetration in medium-voltage (MV) power conversion. Key novel technologies such as enhanced gate-driver, auxiliary power supply network, PCB planar dc-bus, and high-density inductor are presented, enabling the SiC-based designs in modular MV converters, overcoming aforementioned challenges. However, purely substituting SiC design instead of Si-based ones in modular MV converters, would expectedly yield only limited gains. Therefore, to further elevate SiC-based designs, novel high-bandwidth control strategies such as switching-cycle control (SCC) and integrated capacitor-blocked transistor (ICBT), as well as high-performance/high-bandwidth communication network are developed. All these technologies combined, overcome barriers posed by state-of-the-art Si designs and unlock system level benefits such as very high power density, high-efficiency, fast dynamic response, unrestricted line frequency operation, and improved power quality, all demonstrated throughout this paper.

Keywords:

SiC MOSFET, modular multilevel converter (MMC), switching-cycle control (SCC), integrated capacitor-blocked transistor (ICBT), PEBB, medium-voltage (MV), high density, high efficiency
Received: 20 November 2021 Revised: 20 December 2021 Accepted: 29 December 2021 Published: 25 March 2022 Issue date: March 2022
References(93)
1
Madhusoodhanan, S., Tripathi, A., Patel, D., Mainali, K., Kadavelugu, A., Hazra, S., Bhattacharya, S., Hatua, K. (2015). Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Transactions on Industry Applications, 51: 3343–3360.https://doi.org/10.1109/TIA.2015.2412096
2
Das, M. K., Capell, C., Grider, D. E., Leslie, S., Ostop, J., Raju, R., Schutten, M., Nasadoski, J., Hefner, A. (2011). 10 kV, 120 A SiC half H-bridge power MOSFET modules suitable for high frequency, medium voltage applications. In: Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA.https://doi.org/10.1109/ECCE.2011.6064129
3
Cuzner, R. M. (2015). Power electronics packaging challenges for future warship applications. In: Proceedings of the 2015 IEEE International Workshop on Integrated Power Packaging, Chicago, IL, USA.https://doi.org/10.1109/IWIPP.2015.7295965
4

Marzoughi, A., Burgos, R., Boroyevich, D. (2019). Investigating impact of emerging medium-voltage SiC MOSFETs on medium-voltage high-power industrial motor drives. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7: 1371–1387.

5
Casarin, J., Ladoux, P., Lasserre, P. (2015). 10 kV SiC MOSFETs versus 6.5 kV Si-IGBTs for medium frequency transformer application in railway traction. In: Proceedings of the 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany.https://doi.org/10.1109/ESARS.2015.7101518
6
Lin, X., Ravi, L., Mocevic, S., Dong, D., Burgos, R. (2020). Active voltage balancing embedded digital gate driver for series-connected 10 kV SiC MOSFETs. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124263
7
Ravi, L., Lin, X., Dong, D., Burgos, R. (2020). An 11 kV AC, 16 kV DC, 200 kW direct-to-line inverter building-block using series-connected 10 kV SiC MOSFETs. In: Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA.https://doi.org/10.1109/ECCE44975.2020.9236212
8

Millán, J., Godignon, P., Perpiñà, X., Pérez-Tomás, A., Rebollo, J. (2014). A survey of wide bandgap power semiconductor devices. IEEE Transactions on Power Electronics, 29: 2155–2163.

9
Palmer, J., Ji, S. Q., Huang, X. X., Zhang, L., Giewont, W., Wang, F. F., Tolbert, L. M. (2019). Testing and validation of 10 kV SiC MOSFET based 35 kVA MMC phase-leg for medium voltage (13.8 kV) grid. In: Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition, Baltimore, MD, USA.https://doi.org/10.1109/ECCE.2019.8912959
10

Pan, J. Y., Ke, Z. W., Al Sabbagh, M., Li, H., Potty, K. A., Perdikakis, W., Na, R. S., Zhang, J. L., Wang, J., Xu, L. Y. (2020). 7-kV 1-MVA SiC-based modular multilevel converter prototype for medium-voltage electric machine drives. IEEE Transactions on Power Electronics, 35: 10137–10149.

11

Belkhode, S., Rao, P., Shukla, A., Doolla, S. (2022). Comparative evaluation of silicon and silicon-carbide device-based MMC and NPC converter for medium-voltage applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10: 856–867.

12
Wang, J., Burgos, R., Boroyevich, D., Wen, B. (2014). Power-cell switching-cycle capacitor voltage control for the modular multilevel converters. In: Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan.https://doi.org/10.1109/IPEC.2014.6869701
13
Wang, J., Burgos, R., Boroyevich, D., Liu, Z. (2018). Design and testing of 1 kV H-bridge power electronics building block based on 1.7 kV SiC MOSFET module. In: Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018 - ECCE Asia), Niigata.https://doi.org/10.23919/IPEC.2018.8507368
14
Wang, J., Burgos, R., Boroyevich, D. (2014). Switching-cycle state-space modeling and control of the modular multilevel converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2: 1159–1170.https://doi.org/10.1109/JESTPE.2014.2354393
15
Fan, B. R., Wang, J., Yu, J. H., Mocevic, S., Rong, Y., Burgos, R., Boroyevich, D. (2021). Cell capacitor voltage switching-cycle balancing control for modular multilevel converters. IEEE Transactions on Power Electronics, 37: 2525–2530https://doi.org/10.1109/TPEL.2021.3116803
16
Aeloiza, E., Canales, F., Burgos, R. (2016). Power converter having integrated capacitor-blocked transistor cells. US Patent, US9525348B1, 2016-12-20.
17
Yu, J. H., Burgos, R. (2020). Operation and control of converters having integrated capacitor blocked transistor cells. In: Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA.https://doi.org/10.1109/ECCE44975.2020.9235414
18
Yu, J. H., Burgos, R. (2020). Impact of parasitic capacitors on cell capacitor voltage balance in power converters having integrated capacitor blocked transistor cells. In: Proceedings of the 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics, Aalborg, Denmark.https://doi.org/10.1109/COMPEL49091.2020.9265849
19
Konstantinou, G., Zhang, J. Q., Ceballos, S., Pou, J., Agelidis, V. G. (2015). Comparison and evaluation of sub-module configurations in modular multilevel converters. In: Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, Australia.https://doi.org/10.1109/PEDS.2015.7203440
20
Wang, J., Mocevic, S., Hu, J. W., Xu, Y., DiMarino, C., Cvetkovic, I., Burgos, R., Boroyevich, D. (2018). Design and testing of 6 kV H-bridge power electronics building block based on 10 kV SiC MOSFET module. In: Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018 - ECCE Asia), Niigata.https://doi.org/10.23919/IPEC.2018.8507435
21
DiMarino, C. M., Mouawad, B., Johnson, C. M., Boroyevich, D., Burgos, R. (2020). 10-kV SiC MOSFET power module with reduced common-mode noise and electric field. IEEE Transactions on Power Electronics, 35: 6050–6060.https://doi.org/10.1109/TPEL.2019.2952633
22
DiMarino, C., Mouawad, B., Johnson, C. M., Wang, M. Y., Tan, Y. S., Lu, G. Q., Boroyevich, D., Burgos, R. (2020). Design and experimental validation of a wire-bond-less 10-kV SiC MOSFET power module. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8: 381–394.https://doi.org/10.1109/JESTPE.2019.2944138
23
Hayes, J., Curbow, W. A., Sparkman, B., Martin, D., Olejniczak, K., Wijenayake, A., McNutt, T. (2017). Dynamic characterization of next generation medium voltage (3.3 kV, 10 kV) silicon carbide power modules. In: Proceedings of the PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany.
24
DeBoi, B., Lemmon, A., Nelson, B., New, C., Hudson, D. (2020). Modeling and validation of medium voltage SiC power modules. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124285
25
Passmore, B., Cole, Z., McGee, B., Wells, M., Stabach, J., Bradshaw, J., Shaw, R., Martin, D., McNutt, T., VanBrunt, E. et al. (2016). The next generation of high voltage (10 kV) silicon carbide power modules. In: Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA.https://doi.org/10.1109/WiPDA.2016.7799900
26
Nakashima, J. I., Fukumoto, A., Obiraki, Y., Oi, T., Mitsui, Y., Nakatake, H., Toyoda, Y., Nishizawa, A., Kawahara, K., Hino, S., Watanabe, H., et al. (2018). 6.5-kV full-SiC power module (HV100) with SBD-embedded SiC-MOSFETs. In: Proceedings of the PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany.
27
Ishigaki, T., Hayakawa, S., Murata, T., Tabata, T., Asaka, K., Kinoshita, K., Oda, T., Yasui, K., Morita, T., Kawase, D., et al. (2018). A 3.3 kv/800 a ultra-high power density sic power module. In: Proceedings of the PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany.
28
Johannesson, D., Nawaz, M., Ilves, K. (2018). Assessment of 10 kV, 100 A silicon carbide mosfet power modules. IEEE Transactions on Power Electronics, 33: 5215–5225.https://doi.org/10.1109/TPEL.2017.2728723
29
Hu, B. X., Lyu, X. T., Xing, D. A., Ma, D. H., Brothers, J., Na, R. S., Wang, J. (2018). A survey on recent advances of medium voltage silicon carbide power devices. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA.https://doi.org/10.1109/ECCE.2018.8558451
30
Infineon (2020). Fd250r65ke3-k—Highly insulated module with Trench/Fieldstop IGBT3 and emitter controlled 3 diode.
31
Kadavelugu, A., Bhattacharya, S. (2014). Design considerations and development of gate driver for 15 kV SiC IGBT. In: Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, USA.https://doi.org/10.1109/APEC.2014.6803505
32

Anurag, A., Acharya, S., Prabowo, Y., Gohil, G., Bhattacharya, S. (2019). Design considerations and development of an innovative gate driver for medium-voltage power devices with high dv/dt. IEEE Transactions on Power Electronics, 34: 5256–5267.

33
Huang, X. X., Palmer, J., Ji, S. Q., Zhang, L., Wang, F., Tolbert, L. M., Giewont, W. (2019). Design and testing of a modular multilevel converter submodule based on 10 kV SiC MOSFETs. In: Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA.https://doi.org/10.1109/ECCE.2019.8913193
34

Wang, J., Mocevic, S., Burgos, R., Boroyevich, D. (2020). High-scalability enhanced gate drivers for SiC MOSFET modules with transient immunity beyond 100 V/ns. IEEE Transactions on Power Electronics, 35: 10180–10199.

35
Wang, J., Mocevic, S., Xu, Y., DiMarino, C., Burgos, R., Boroyevich, D. (2018). A high-speed gate driver with PCB-embedded rogowski switch-current sensor for a 10 kV, 240 A, SiC MOSFET module. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA.https://doi.org/10.1109/ECCE.2018.8557631
36

Gao, C. F., Xu, Y., Wang, J., Burgos, R., Boroyevich, D., Wang, W. (2019). Partial discharge online monitoring and localization for critical air gaps among SiC-based medium-voltage converter prototype. IEEE Transactions on Power Electronics, 34: 11725–11735.

37

Zhang, C. X., Xu, Y., Dong, M., Burgos, R., Ren, M., Boroyevich, D. (2020). Design and assessment of external insulation for critical components in a medium voltage SiC-based converter via optical method. IEEE Transactions on Power Electronics, 35: 12887–12897.

38
Xu, Y., Zhang, C. X., Gao, C. F., Wang, J., Burgos, R., Boroyevich, D., Ren, M. (2019). Insulation online monitoring for critical components inside SiC based medium voltage converter prototype. In: Proceedings of the 2019 IEEE Electric Ship Technologies Symposium, Washington, DC, USA.https://doi.org/10.1109/ESTS.2019.8847930
39
Xu, Y., Ghessemi, M., Wang, J., Burgos, R., Boroyevich, D. (2018). Electrical field analysis and insulation evaluation of a 6 kV H-bridge power electronics building block (PEBB) using 10 kV SiC MOSFET devices. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA.https://doi.org/10.1109/ECCE.2018.8557489
40
Mocevic, S., Wang, J., Burgos, R., Boroyevich, D. (2021). Rogowski switch-current sensor self-calibration on enhanced gate driver for 10 kV SiC MOSFETs. In: Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia, Singapore.https://doi.org/10.1109/ECCE-Asia49820.2021.9478973
41
Wang, J., Shen, Z. Y., DiMarino, C., Burgos, R., Boroyevich, D. (2016). Gate driver design for 1.7kV SiC MOSFET module with Rogowski Current sensor for shortcircuit protection. In: Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA.https://doi.org/10.1109/APEC.2016.7467921
42

Mocevic, S., Yu, J. H., Xu, Y., Stewart, J., Wang, J., Cvetkovic, I., Dong, D., Burgos, R., Boroyevich, D. (2021). Power cell design and assessment methodology based on a high-current 10-kV SiC MOSFET half-bridge module. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9: 3916–3935.

43

Hu, B. X., Wei, Z., Li, H., Xing, D. A., Scott, M. J., Na, R. S., Wang, J. (2020). A self-sustained circuit building block based on 10-kV silicon carbide devices for high-voltage applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8: 2801–2811.

44

Won, J., Jalali, G., Liang, X. Y., Zhang, C., Srdic, S., Lukic, S. M. (2019). Auxiliary power supply for medium-voltage power converters: topology and control. IEEE Transactions on Industry Applications, 55: 4145–4156.

45
Peftitsis, D., Antivachis, M., Biela, J. (2015). Auxiliary power supply for medium-voltage modular multilevel converters. In: Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE - Europe), Geneva, Switzerland.https://doi.org/10.1109/EPE.2015.7309388
46
Wunsch, B., Bradshaw, J., Stevanović, I., Canales, F., Van-der-Merwe, W., Cottet, D. (2015). Inductive power transfer for auxiliary power of medium voltage converters. In: Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition, Charlotte, NC, USA.https://doi.org/10.1109/APEC.2015.7104710
47
Sun, K. Y., Yan, N., Wang, J., Dong, D., Burgos, R., Boroyevich, D. (2020). Auxiliary power network architecture for 10 kV SiC-based power electronics building blocks. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124332
48
Sun, K. Y., Wang, J., Lin, X., Burgos, R., Boroyevich, D. (2020). Pre-charge, discharge, and mini-UPS circuits in auxiliary power network architecture for 10 kV SiC-based power electronics building block. In: Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA.https://doi.org/10.1109/ECCE44975.2020.9236134
49
Sun, K. Y., Wang, J., Burgos, R., Boroyevich, D. (2020). A series-series-CL resonant converter for wireless power transfer in auxiliary power network. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124310
50
Sun, K. Y., Wang, J., Burgos, R., Boroyevich, D. (2020). Design and multi-objective optimization of coil and magnetic for wireless power transfer in auxiliary power network. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124585
51

Sun, K. Y., Xu, Y., Wang, J., Burgos, R., Boroyevich, D. (2021). Insulation design of wireless auxiliary power supply for medium voltage converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9: 4200–4211.

52

Zhang, X., Li, H., Brothers, J. A., Fu, L. X., Perales, M., Wu, J., Wang, J. (2016). A gate drive with power over fiber-based isolated power supply and comprehensive protection functions for 15-kV SiC MOSFET. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4: 946–955.

53

Zhang, L., Ji, S. Q., Gu, S. D., Huang, X. X., Palmer, J. E., Giewont, W., Wang, F. F., Tolbert, L. M. (2021). Design considerations for high-voltage insulated gate drive power supply for 10-kV SiC MOSFET applied in medium-voltage converter. IEEE Transactions on Industrial Electronics, 68: 5712–5724.

54
Gottschlich, J., Schäfer, M., Neubert, M., de Doncker, R. W. (2016). A galvanically isolated gate driver with low coupling capacitance for medium voltage SiC MOSFETs. In: Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, Germany.https://doi.org/10.1109/EPE.2016.7695608
55
Yan, N., Hu, J. W., Wang, J., Dong, D., Burgos, R. (2020). Design analysis for current-transformer based high-frequency auxiliary power supply for SiC-based medium voltage converter systems. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124436
56
Yan, N., Chen, Q., Dong, D., Burgos, R. (2020). Design of insulation system in high-frequency auxiliary power supply for medium voltage applications. In: Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA.https://doi.org/10.1109/ECCE44975.2020.9235743
57

Yan, N., Dong, D., Burgos, R. (2022). A multichannel high-frequency current link based isolated auxiliary power supply for medium-voltage applications. IEEE Transactions on Power Electronics, 37: 674–686.

58

Li, S. N., Tolbert, L. M., Wang, F., Peng, F. Z. (2014). Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module. IEEE Transactions on Power Electronics, 29: 3616–3624.

59
CREE (2013). Design considerations for designing with cree SiC modules: Part 2 techniques for minimizing parasitic inductance. Cree, Durham, NC, USA.
60

Xu, Y., Feng, X. Y., Wang, J., Gao, C. F., Burgos, R., Boroyevich, D., Hebner, R. E. (2019). Medium-voltage SiC-based converter laminated bus insulation design and assessment. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7: 1715–1726.

61
Stewart, J., Xu, Y., Burgos, R., Ghassemi, M. (2019). Design of a multilayer PCB bus for medium voltage DC converters. In: Proceedings of the 2019 IEEE Electric Ship Technologies Symposium, Washington, DC, USA.https://doi.org/10.1109/ESTS.2019.8847737
62
Ravi, L., Lin, X., Dong, D., Burgos, R. (2020). A 16 kV PCB-based DC-bus distributed capacitor array with integrated power-AC-terminal for 10 kV SiC MOSFET modules in medium-voltage inverter applications. In: Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA.https://doi.org/10.1109/ECCE44975.2020.9236300
63

Chen, W., Huang, A. Q., Li, C. S., Wang, G. Y., Gu, W. (2013). Analysis and comparison of medium voltage high power DC/DC converters for offshore wind energy systems. IEEE Transactions on Power Electronics, 28: 2014–2023.

64

Lai, J. S., Nelson, D. J. (2007). Energy management power converters in hybrid electric and fuel cell vehicles. Proceedings of the IEEE, 95: 766–777.

65

Espino-Cortes, F. P., Jayaram, S., Cherney, E. A. (2006). Stress grading materials for cable terminations under fast-rise time pulses. IEEE Transactions on Dielectrics and Electrical Insulation, 13: 430–435.

66

Espino-cortes, F. P., Cherney, E. A., Jayaram, S. H. (2007). Impact of inverter drives employing fast-switching devices on form-wound AC machine stator coil stress grading. IEEE Electrical Insulation Magazine, 23: 16–28.

67
Sharifi-Ghazvini, E. (2011). Analysis of electrical and thermal stresses in the stress relief system of inverter fed medium voltage induction motors. PhD Thesis, University of Waterloo, Canada.
68
Guillod, T., Krismer, F., Kolar, J. W. (2017). Electrical shielding of MV/MF transformers subjected to high dv/dt PWM voltages. In: Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition, Tampa, FL, USA.https://doi.org/10.1109/APEC.2017.7931050
69
Chen, Q., Raju, R., Dong, D., Agamy, M. (2018). High frequency transformer insulation in medium voltage SiC enabled air-cooled solid-state transformers. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA.https://doi.org/10.1109/ECCE.2018.8557849
70
Song, H., Wang, J., Xu, Y., Burgos, R., Boroyevich, D. (2020). A high-density single-turn inductor for a 6 kV SiC-based power electronics building block. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA.https://doi.org/10.1109/APEC39645.2020.9124170
71

Fan, B. R., Li, Y. D., Wang, K., Zheng, Z. D., Xu, L. (2017). Hierarchical system design and control of an MMC-based power-electronic transformer. IEEE Transactions on Industrial Informatics, 13: 238–247.

72

Yang, S. F., Tang, Y., Wang, P. (2018). Distributed control for a modular multilevel converter. IEEE Transactions on Power Electronics, 33: 5578–5591.

73

Rong, Y., Wang, J., Shen, Z. Y., Zhou, S. Z., Wen, B., Burgos, R., Boroyevich, D., Verhulst, J., Belkhayat, M. (2021). A synchronous distributed communication and control system for SiC-based modular impedance measurement units. IEEE Journal of Emerging and Selected Topics in Power Electronics.

74
Carstensen, C., Christen, R., Vollenweider, H., Stark, R., Biela, J. (2015). A converter control field bus protocol for power electronic systems with a synchronization accuracy of ±5 ns. In: Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE - Europe), Geneva, Switzerland.https://doi.org/10.1109/EPE.2015.7309146
75
Rietmann, S., Fuchs, S., Hillers, A., Biela, J. (2018). Field bus for data exchange and control of modular power electronic systems with high synchronisation accuracy. In: Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata.https://doi.org/10.23919/IPEC.2018.8507631
76
Steinmann, B., Fernandez, G., Cherix, N. (2019). Tree-shaped networked control system for modular power converters with sub-μs latency and ns-scale synchronization accuracy. In: Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition, Baltimore, MD, USA.https://doi.org/10.1109/ECCE.2019.8912155
77
Fan, B. R., Wang, J., Rong, Y., Mitrovic, V., Yu, J. H., Mocevic, S., Burgos, R., Boroyevich, D. (2021). Distributed control for modular multilevel converters operated in switching-cycle balancing mode. In: Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition, Vancouver, BC, Canada.https://doi.org/10.1109/ECCE47101.2021.9595047
78
Rong, Y., Shen, Z. Y., Fan, B. R., Mitrovic, V., Yu, J. H., Mocevic, S., Wang, J., Boroyevich, D., Burgos, R. (2021). High-performance distributed power electronics communication network design with 5 gbps data rate and sub-nanosecond synchronization accuracy. In: Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition, Vancouver, BC, Canada.https://doi.org/10.1109/ECCE47101.2021.9595693
79
Lipiński, M., Włostowski, T., Serrano, J., Alvarez, P. (2011). White rabbit: A PTP application for robust sub-nanosecond synchronization. In: Proceedings of the 2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, Munich, Germany.https://doi.org/10.1109/ISPCS.2011.6070148
80
Rizzi, M., Lipiński, M., Wlostowski, T., Serrano, J., Daniluk, G., Ferrari, P., Rinaldi, S. (2016). White rabbit clock characteristics. In: Proceedings of the 2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Stockholm, Sweden.https://doi.org/10.1109/ISPCS.2016.7579514
81
EtherCAT Technology Group (2020). EtherCAT—the Ethernet Fieldbus. EtherCAT Technology Group, Nuremberg, Germany.
82
Toh, C. L., Norum, L. E. (2013). A high speed control network synchronization jitter evaluation for embedded monitoring and control in modular multilevel converter. In: Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France.https://doi.org/10.1109/PTC.2013.6652174
83
Dan Burlacu, P., Mathe, L., Rejas, M., Pereira, H., Sangwongwanich, A., Teodorescu, R. (2015). Implementation of fault tolerant control for modular multilevel converter using EtherCAT communication. In: Proceedings of the 2015 IEEE International Conference on Industrial Technology, Seville, Spain.https://doi.org/10.1109/ICIT.2015.7125551
84
Rong, Y., Wang, J., Shen, Z. Y., Burgos, R., Boroyevich, D., Zhou, S. Z. (2019). Distributed control and communication system for PEBB-based modular power converters. In: Proceedings of the 2019 IEEE Electric Ship Technologies Symposium, Washington, DC, USA.https://doi.org/10.1109/ESTS.2019.8847807
85
Shang, X. J., Wang, G. Z., Li, F., Wu, Q., Feng, J. Z. (2015). Low output frequency operation of modular multilevel matrix converter. In: Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China.https://doi.org/10.1109/DRPT.2015.7432614
86
Winkelnkemper, M., Korn, A., Steimer, P. (2010). A modular direct converter for transformerless rail interties. In: Proceedings of the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy.https://doi.org/10.1109/ISIE.2010.5637826
87
Mocevic, S., Yu, J. H., Xu, Y., Stewart, J., Wang, J., Cvetkovic, I., Dong, D., Burgos, R., Boroyevich, D. (2020). Assessment methodology for power-cell based on high-current 10 kV SiC MOSFET half-bridge module. In: Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems, Dubrovnik, Croatia.https://doi.org/10.1109/PEDG48541.2020.9244306
88

Xu, Y., Stewart, J., Song, H., Cheng, L., Cvetkovic, I., Burgos, R., Boroyevich, D. (2022). High power density medium-voltage converter integration via electric field management. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10: 895–905.

89

Kim, H., Anurag, A., Acharya, S., Bhattacharya, S. (2021). Analytical study of SiC MOSFET based inverter output dv/dt mitigation and loss comparison with a passive dv/dt filter for high frequency motor drive applications. IEEE Access, 9: 15228–15238.

90
Li, Z., Bhalla, A., Losee, P., Zhu, K. (2020). dV/dt control methods for UnitedSiC SiC FETs with internal cascode structure. In: Proceedings of the PCIM Europe Digital Days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany.
91
Sun, B. Y., Burgos, R., Zhang, X. N., Boroyevich, D. (2016). Active dv/dt control of 600V GaN transistors. In: Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA.https://doi.org/10.1109/ECCE.2016.7854818
92
Kagerbauer, J. D., Jahns, T. M. (2007). Development of an active dv/dt control algorithm for reducing inverter conducted EMI with minimal impact on switching losses. In: Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA.https://doi.org/10.1109/PESC.2007.4342107
93

Habetler, T. G., Naik, R., Nondahl, T. A. (2002). Design and implementation of an inverter output LC filter used for dv/dt reduction. IEEE Transactions on Power Electronics, 17: 327–331.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 November 2021
Revised: 20 December 2021
Accepted: 29 December 2021
Published: 25 March 2022
Issue date: March 2022

Copyright

© The author(s) 2022

Acknowledgements

Acknowledgements

This research was conducted under ARPA-e from DOE with the award number DE-AR0000892.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Reprints and Permission requests may be sought directly from editorial office.

Return