AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Energy-efficient multiuser and multitask computation offloading optimization method

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
School of IoT Engineering, Jiangnan University, Wuxi 214122, China
Show Author Information

Abstract

For dynamic application scenarios of Mobile Edge Computing (MEC), an Energy-efficient Multiuser and Multitask Computation Offloading (EMMCO) optimization method is proposed. Under the consideration of multiuser and multitask computation offloading, first, the EMMCO method takes into account the existence of dependencies among different tasks within an implementation, abstracts these dependencies as a Directed Acyclic Graph (DAG), and models the computation offloading problem as a Markov decision process. Subsequently, the task embedding sequence in the DAG is fed to the RNN encoder-decoder neural network with combination of the attention mechanism, the long-term dependencies among different tasks are successfully captured by this scheme. Finally, the Improved Policy Loss Clip-based PPO2 (IPLC-PPO2) algorithm is developed, and the RNN encoder-decoder neural network is trained by the developed algorithm. The loss function in the IPLC-PPO2 algorithm is utilized as a preference for the training process, and the neural network parameters are continuously updated to select the optimal offloading scheduling decisions. Simulation results demonstrate that the proposed EMMCO method can achieve lower latency, reduce energy consumption, and obtain a significant improvement in the Quality of Service (QoS) than the compared algorithms under different situations of mobile edge network.

References

[1]

Z. Chen, L. Zhang, Y. Pei, C. Jiang, and L. Yin, NOMA-based multi-user mobile edge computation offloading via cooperative multi-agent deep reinforcement learning, IEEE Trans. Cognit. Commun. Netw., vol. 8, no. 1, pp. 350–364, 2022.

[2]

S. Nath and J. Wu, Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile edge computing systems, Intelligent and Converged Networks, vol. 1, no. 2, pp. 181–198, 2020.

[3]

G. Mitsis, E. E. Tsiropoulou, and S. Papavassiliou, Price and risk awareness for data offloading decision-making in edge computing systems, IEEE Syst. J., vol. 16, no. 4, pp. 6546–6557, 2022.

[4]

Z. Tong, X. Deng, J. Mei, L. Dai, K. Li, and K. Li, Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing, J. Syst. Architect., vol. 137, p. 102847, 2023.

[5]

K. Zhang, X. Gui, D. Ren, T. Du, and X. He, Optimal pricing-based computation offloading and resource allocation for blockchain-enabled beyond 5G networks, Comput. Netw., vol. 203, p. 108674, 2022.

[6]

G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang, Joint service caching, computation offloading and resource allocation in mobile edge computing systems, IEEE Trans. Wirel. Commun., vol. 20, no. 8, pp. 5288–5300, 2021.

[7]

Y. Chen, X. Zhou, W. Wang, H. Wang, Z. Zhang, and Z. Zhang, Delay-optimal closed-form scheduling for multi-destination computation offloading, IEEE Wirel. Commun. Lett., vol. 10, no. 9, pp. 1904–1908, 2021.

[8]

C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, Joint computation offloading and interference management in wireless cellular networks with mobile edge computing, IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7432–7445, 2017.

[9]
E. F. Maleki and L. Mashayekhy, Mobility-aware computation offloading in edge computing using prediction, in Proc. of the 2020 IEEE 4th Int. Conf. on Fog and Edge Computing (ICFEC), Melbourne, Australia, 2020, pp. 69–74.
[10]

H. Tout, A. Mourad, N. Kara, and C. Talhi, Multi-persona mobility: Joint cost-effective and resource-aware mobile-edge computation offloading, IEEE/ACM Trans. Netw., vol. 29, no. 3, pp. 1408–1421, 2021.

[11]

R. Ezhilarasie, M. S. Reddy, and A. Umamakeswari, A new hybrid adaptive GA-PSO computation offloading algorithm for IoT and CPS context application, J. Intell. Fuzzy Syst., vol. 36, no. 5, pp. 4105–4113, 2019.

[12]

M. Babar, M. S. Khan, A. Din, F. Ali, U. Habib, and K. S. Kwak, Intelligent computation offloading for IoT applications in scalable edge computing using artificial bee colony optimization, Complexity, vol. 2021, p. 5563531, 2021.

[13]

S. Jošilo and G. Dán, Computation offloading scheduling for periodic tasks in mobile edge computing, IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 667–680, 2020.

[14]

L. Tang and S. He, Multi-user computation offloading in mobile edge computing: A behavioral perspective, IEEE Netw., vol. 32, no. 1, pp. 48–53, 2018.

[15]

M. Merluzzi, N. di Pietro, P. Di Lorenzo, E. C. Strinati, and S. Barbarossa, Discontinuous computation offloading for energy-efficient mobile edge computing, IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 1242–1257, 2022.

[16]

W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan, Mobility-aware multi-user offloading optimization for mobile edge computing, IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3341–3356, 2020.

[17]

S. Bi, L. Huang, and Y. J. A. Zhang, Joint optimization of service caching placement and computation offloading in mobile edge computing systems, IEEE Trans. Wirel. Commun., vol. 19, no. 7, pp. 4947–4963, 2020.

[18]

C. Yi, J. Cai, and Z. Su, A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications, IEEE Trans. Mob. Comput., vol. 19, no. 1, pp. 29–43, 2020.

[19]

J. Yan, S. Bi, Y. Zhang, and M. Tao, Optimal task offloading and resource allocation in mobile-edge computing with inter-user task dependency, IEEE Trans. Wirel. Commun., vol. 19, no. 1, pp. 235–250, 2020.

[20]

H. Liu, Z. Niu, J. Du, and X. Lin, Genetic algorithm for delay efficient computation offloading in dispersed computing, Ad Hoc Netw., vol. 142, p. 103109, 2023.

[21]

H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi, Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing, IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 668–682, 2019.

[22]

H. Xiao, C. Xu, Y. Ma, S. Yang, L. Zhong, and G. M. Muntean, Edge intelligence: A computational task offloading scheme for dependent IoT application, IEEE Trans. Wirel. Commun., vol. 21, no. 9, pp. 7222–7237, 2022.

[23]

J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, Efficient dependent task offloading for multiple applications in MEC-cloud system, IEEE Trans. Mob. Comput., vol. 22, no. 4, pp. 2147–2162, 2023.

[24]

J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N. Georgalas, Dependent task offloading for edge computing based on deep reinforcement learning, IEEE Trans. Comput., vol. 71, no. 10, pp. 2449–2461, 2022.

[25]

J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, Fast adaptive task offloading in edge computing based on meta reinforcement learning, IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253, 2021.

[26]

L. Huang, S. Bi, and Y. J. A. Zhang, Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks, IEEE Trans. Mob. Comput., vol. 19, no. 11, pp. 2581–2593, 2020.

[27]

M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, Learning-based computation offloading for IoT devices with energy harvesting, IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, 2019.

[28]
X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, Performance optimization in mobile-edge computing via deep reinforcement learning, in Proc. of the 2018 IEEE 88th Vehicular Technology Conf. (VTC-Fall), Chicago, IL, USA, 2019, pp. 1–6.
[29]

M. Tang and V. W. S. Wong, Deep reinforcement learning for task offloading in mobile edge computing systems, IEEE Trans. Mob. Comput., vol. 21, no. 6, pp. 1985–1997, 2022.

[30]

B. M. Amine, F. Farha, and H. Ning, Convergence of computing, communication, and caching in Internet of Things, Intell. Conver. Netw., vol. 1, no. 1, pp. 18–36, 2020.

[31]

S. Chu, Z. Fang, S. Song, Z. Zhang, C. Gao, and C. Xu, Efficient multi-channel computation offloading for mobile edge computing: A game-theoretic approach, IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1738–1750, 2022.

[32]

Y. Liao, L. Shou, Q. Yu, Q. Ai, and Q. Liu, Joint offloading decision and resource allocation for mobile edge computing enabled networks, Comput. Commun., vol. 154, pp. 361–369, 2020.

[33]
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv preprint arXiv: 1707.06347, 2017.
[34]
Z. Zhang, X. Luo, T. Liu, S. Xie, J. Wang, W. Wang, Y. Li, and Y. Peng, Proximal policy optimization with mixed distributed training, in Proc. of the 2019 IEEE 31st Int. Conf. on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 2019, pp. 1452–1456.
[35]
J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, High-dimensional continuous control using generalized advantage estimation, arXiv preprint arXiv: 1506.02438, 2018.
[36]
I. Loshchilov and F. Hutter, SGDR: Stochastic gradient descent with warm restarts, arXiv preprint arXiv: 1608.03983, 2017.
[37]

D. Zhao, D. Liu, F. L. Lewis, J. C. Principe, and S. Squartini, Special issue on deep reinforcement learning and adaptive dynamic programming, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2038–2041, 2018.

[38]

S. Suzuki, M. Fujiwara, Y. Makino, and H. Shinoda, Radiation pressure field reconstruction for ultrasound midair haptics by greedy algorithm with brute-force search, IEEE Trans. Haptics, vol. 14, no. 4, pp. 914–921, 2021.

[39]

G. Patel, R. Mehta, and U. Bhoi, Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing, Procedia Comput. Sci., vol. 57, pp. 545–553, 2015.

Intelligent and Converged Networks
Pages 76-92
Cite this article:
Pan M, Li Z, Qian J. Energy-efficient multiuser and multitask computation offloading optimization method. Intelligent and Converged Networks, 2023, 4(1): 76-92. https://doi.org/10.23919/ICN.2023.0007

495

Views

25

Downloads

3

Crossref

2

Scopus

Altmetrics

Received: 31 March 2023
Accepted: 20 April 2023
Published: 20 March 2023
© All articles included in the journal are copyrighted to the ITU and TUP.

This work is available under the CC BY-NC-ND 3.0 IGO license:https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return