Journal Home > Volume 2 , Issue 2

Future beyond fifth-generation (B5G) and sixth-generation (6G) mobile communications will shift from facilitating interpersonal communications to supporting internet of everything (IoE), where intelligent communications with full integration of big data and artificial intelligence (AI) will play an important role in improving network efficiency and providing high-quality service. As a rapid evolving paradigm, the AI-empowered mobile communications demand large amounts of data acquired from real network environment for systematic test and verification. Hence, we build the world’s first true-data testbed for 5G/B5G intelligent network (TTIN), which comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization. In the TTIN, true network data acquisition, storage, standardization, and analysis are available, which enable system-level online verification of B5G/6G-orientated key technologies and support data-driven network optimization through the closed-loop control mechanism. This paper elaborates on the system architecture and module design of TTIN. Detailed technical specifications and some of the established use cases are also showcased.


menu
Abstract
Full text
Outline
About this article

True-data testbed for 5G/B5G intelligent network

Show Author's information Yongming HuangShengheng LiuCheng ZhangXiaohu You*( )Hequan Wu
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
China Information and Communication Technology Group Corporation, Beijing 100083, China
Purple Mountain Laboratories, Nanjing 211111, China

Abstract

Future beyond fifth-generation (B5G) and sixth-generation (6G) mobile communications will shift from facilitating interpersonal communications to supporting internet of everything (IoE), where intelligent communications with full integration of big data and artificial intelligence (AI) will play an important role in improving network efficiency and providing high-quality service. As a rapid evolving paradigm, the AI-empowered mobile communications demand large amounts of data acquired from real network environment for systematic test and verification. Hence, we build the world’s first true-data testbed for 5G/B5G intelligent network (TTIN), which comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization. In the TTIN, true network data acquisition, storage, standardization, and analysis are available, which enable system-level online verification of B5G/6G-orientated key technologies and support data-driven network optimization through the closed-loop control mechanism. This paper elaborates on the system architecture and module design of TTIN. Detailed technical specifications and some of the established use cases are also showcased.

Keywords: big data, true-data testbed, wireless communication networks, artificial intelligence (AI), internet of everything (IoE)

References(38)

[1]
You X. H., Zhang C., Tan X. S., Jin S., and Wu H. Q., AI for 5G: Research directions and paradigms, Sci. China Inf. Sci., vol. 62, no. 2, p. 21301, 2019.
[2]
You X. H., Wang C. X., Huang J., Gao X. Q., Zhang Z. C., Wang M., Huang Y. M., Zhang C., Jiang Y. X., Wang J. H., et al., Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts, Sci. China Inf. Sci., vol. 64, no. 1, p. 110301, 2021.
[3]
Zhao Y., Zhao J., Zhai W. C., Sun S. M., Niyato D., and Lam K. Y., A survey of 6G wireless communications: Emerging technologies, arXiv preprint arXiv: 2004.08549, 2020.
[4]
Yang P., Xiao Y., Xiao M., and Li S. Q., 6G wireless communications: Vision and potential techniques, IEEE Netw., vol. 33, no. 4, pp. 70-75, 2019.
[5]
Letaief K. B., Chen W., Shi Y. M., Zhang J., and Zhang Y. J. A., The roadmap to 6G: AI empowered wireless networks, IEEE Commun. Mag., vol. 57, no. 8, pp. 84-90, 2019.
[6]
Zhou P., Fang X. M., Wang X. B., Long Y., He R., and Han X., Deep learning-based beam management and interference coordination in dense mmWave networks, IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 592-603, 2019.
[7]
Liu Y. N., Wang X. B., Boudreau G., Sediq A. B., and Abou-zeid H., Deep learning based hotspot prediction and beam management for adaptive virtual small cell in 5G Networks, IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 1, pp. 83-94, 2020.
[8]
Zhang J. J., Huang Y. M., Wang J. H., and You X. H., Intelligent beam training for millimeter-wave communications via deep reinforcement learning, in Proc. 2019 IEEE Global Communications Conf. (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-7.
DOI
[9]
Zhang J. J., Huang Y. M., Zhou Y., and You X. H., Beam alignment and tracking for millimeter wave communications via bandit learning, IEEE Trans. Commun., vol. 68, no. 9, pp. 5519-5533, 2020.
[10]
Zhang J. J., Huang Y. M., Wang J. H., You X. H., and Masouros C., Intelligent interactive beam training for millimeter wave communications, IEEE Trans. Wirel. Commun, .
[11]
Xu C. M., Liu S. H., Zhang C., Huang Y. M., and Yang L. X., Joint user scheduling and beam selection in mmWave networks based on multi-agent reinforcement learning, in Proc. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020, pp. 1-5.
[12]
Taha M., Parra L., Garcia L., and Lloret J., An intelligent handover process algorithm in 5G networks: The use case of mobile cameras for environmental surveillance, in Proc. 2017 IEEE Int. Conf. Communications Workshops (ICC), Paris, France, 2017, pp. 840-844.
DOI
[13]
Li R. P., Zhao Z. F., Zhou X., Ding G. R., Chen Y., Wang Z. Y., and Zhang H. G., Intelligent 5G: When cellular networks meet artificial intelligence, IEEE Wirel. Commun., vol. 24, no. 5, pp. 175-183, 2017.
[14]
Mismar F. B., Evans B. L., and Alkhateeb A., Deep reinforcement learning for 5G networks: Joint beamforming, power control, and interference coordination, IEEE Trans. Commun., vol. 68, no. 3, pp. 1581-1592, 2020.
[15]
Lu Y. J., Lu H. C., Cao L. L., Wu F., and Zhu D. R., Learning deterministic policy with target for power control in wireless networks, in Proc. 2018 IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-7.
[16]
Luo C. Q., Ji J. L., Wang Q. L., Yu L. X., and Li P., Online power control for 5G wireless communications: A deep Q-network approach, in Proc. 2018 IEEE Int. Conf. Communications (ICC), Kansas City, MO, USA, 2018, pp. 1-6.
DOI
[17]
Jang H. S., Lee H., and Quek T. Q. S., Deep learning-based power control for non-orthogonal random access, IEEE Commun. Lett., vol. 23, no. 11, pp. 2004-2007, 2019.
[18]
Lee W., Kim M., and Cho D. H., Deep power control: transmit power control scheme based on convolutional neural network, IEEE Commun. Lett., vol. 22, no. 6, pp. 1276-1279, 2018.
[19]
Sheng M., Zhai D. S., Wang X. J., Li Y. Z., Shi Y., and Li J. D., Intelligent energy and traffic coordination for green cellular networks with hybrid energy supply, IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1631-1646, 2017.
[20]
Wu Q. Q., Li G. Y., Chen W., Ng D. W. K., and Schober R., An overview of sustainable green 5G networks, IEEE Wirel. Commun., vol. 24, no. 4, pp. 72-80, 2017.
[21]
Chergui H. and Verikoukis C., Big data for 5G intelligent network slicing management, IEEE Netw., vol. 34, no. 4, pp. 56-61, 2020.
[22]
Yan M., Feng G., Zhou J. H., Sun Y., and Liang Y. C., Intelligent resource scheduling for 5G radio access network slicing, IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7691-7703, 2019.
[23]
Hu L., Miao Y. M., Yang J., Ghoneim A., Hossain M. S., and Alrashoud M., IF-RANs: Intelligent traffic prediction and cognitive caching toward fog-computing-based radio access networks, IEEE Wirel. Commun., vol. 27, no. 2, pp. 29-35, 2020.
[24]
Alawe I., Ksentini A., Hadjadj-Aoul Y., and Bertin P., Improving traffic forecasting for 5G core network scalability: A machine learning approach, IEEE Netw., vol. 32, no. 6, pp. 42-49, 2018.
[25]
Dong R., She C. Y., Hardjawana W., Li Y. H., and Vucetic B., Deep learning for hybrid 5G Services in mobile edge computing systems: Learn from a digital twin, IEEE Trans. Wirel. Commun., vol. 18, no. 10, pp. 4692-4707, 2019.
[26]
Xie R. T., Jia X. H., and Wu K. S., Adaptive online decision method for initial congestion window in 5G mobile edge computing using deep reinforcement learning, IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 389-403, 2020.
[27]
Wang X. F., Han Y. W., Wang C. Y., Zhao Q. Y., Chen X., and Chen M., In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning, IEEE Netw., vol. 33, no. 5, pp. 156-165, 2019.
[28]
Zheng C., Liu S. H., Huang Y. M., and Yang L. X., MEC-enabled wireless VR video service: A learning-based mixed strategy for energy-latency tradeoff, in Proc. 2020 IEEE Wireless Communications and Networking Conf. (WCNC), Seoul, Republic of Korea, 2020, pp. 1-6.
DOI
[29]
Maimó L. F., Celdrán A. H., Pérez M. G., Clemente F. J. G., and Pérez G. M., Dynamic management of a deep learning-based anomaly detection system for 5G networks, J. Ambient. Intell. Human Comput., vol. 10, pp. 3083-3097, 2019.
[30]
Bishop C. M., Pattern Recognition and Machine Learning. New York, NY, USA: Springer, 2006.
[31]
Coronado E., Khan S. N., and Riggio R., 5G-EmPOWER: a software-defined networking platform for 5G radio access networks, IEEE Trans. Netw. Serv. Manage., vol. 16, no. 2, pp. 715-728, 2019.
[32]
Muñóz R., Mangues-Bafalluy J., Vilalta R., Verikoukis C., Alonso-Zarate J., Bartzoudis N., Georgiadis A., Payaró M., Pérez-Neira A., Casellas R., et al., The CTTC 5G end-to-end experimental platform: Integrating heterogeneous wireless/optical networks, distributed cloud, and IoT devices, IEEE Veh. Technol. Mag., vol. 11, no. 1, pp. 50-63, 2016.
[33]
ADRENALINE testbed, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), http://networks.cttc.es/ons/adrenaline/, 2021.
[34]
Kostopoulos A., Chochliouros I., Dardamanis A., Segou O., Kafetzakis E., Soua R., Zhang K., Kuklinski S., Tomaszewski L., Yi N., et al., 5G trial cooperation between EU and China, in Proc. 2020 IEEE Int. Conf. Communications Workshops (ICC), Shanghai, China, 2019.
DOI
[35]
GEDOMIS testbed, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), http:// technologies.cttc.es/phycom/gedomis/, 2021.
[36]
EXTREME testbed, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), http://networks. cttc.es/mobilenetworks/extreme_testbed/, 2021.
[37]
IoTWorld testbed, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), http://iotworld.cttc.es, 2021.
[38]
Ren D. M., Chen K., Liu S. H., and Huang Y. M., FPGA prototyping of a millimeter-wave multiple gigabit WLAN system, in Proc. 2019 IEEE Int. Workshop Signal Processing Systems (SiPS), Nanjing, China, 2019, pp. 260-265.
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 October 2020
Revised: 27 December 2020
Accepted: 13 January 2021
Published: 30 June 2021
Issue date: June 2021

Copyright

© ITU and TUP 2021

Acknowledgements

Acknowledgmen This work was supported in part by the National Key R&D Program of China (No. 2018YFB1800801) and the National Natural Science Foundation of China (Nos. 61720106003 and 62001103).

Rights and permissions

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

Return