Journal Home > Volume 1 , Issue 1

For a future scenario where everything is connected, cognitive technology can be used for spectrum sensing and access, and emerging coding technologies can be used to address the erasure of packets caused by dynamic spectrum access and realize cognitive spectrum collaboration among users in mass connection scenarios. Machine learning technologies are being increasingly used in the implementation of smart networks. In this paper, after an overview of several key technologies in the cognitive spectrum collaboration, a joint optimization algorithm of dynamic spectrum access and coding is proposed and implemented using reinforcement learning, and the effectiveness of the algorithm is verified by simulations, thus providing a feasible research direction for the realization of cognitive spectrum collaboration.


menu
Abstract
Full text
Outline
About this article

Intelligent cognitive spectrum collaboration: Convergence of spectrum sensing, spectrum access, and coding technology

Show Author's information Peixiang Cai( )Yu Zhang
Beijing National Research Center for Information Science and Technology, (BNRist), Beijing 100084, China
Key Laboratory of Digital TV System of Guangdong Province and Shenzhen City, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Abstract

For a future scenario where everything is connected, cognitive technology can be used for spectrum sensing and access, and emerging coding technologies can be used to address the erasure of packets caused by dynamic spectrum access and realize cognitive spectrum collaboration among users in mass connection scenarios. Machine learning technologies are being increasingly used in the implementation of smart networks. In this paper, after an overview of several key technologies in the cognitive spectrum collaboration, a joint optimization algorithm of dynamic spectrum access and coding is proposed and implemented using reinforcement learning, and the effectiveness of the algorithm is verified by simulations, thus providing a feasible research direction for the realization of cognitive spectrum collaboration.

Keywords: cognitive radio, spectrum sensing, dynamic spectrum access, coding technology, reinforcement learning, joint optimization

References(100)

[1]
D. Evans, The internet of things: How the next evolution of the internet is changing everything, https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf, 2011.
[2]
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, Internet of things: A survey on enabling technologies, protocols, and applications, IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.
[3]
S. C. Li, L. D. Xu, and S. S. Zhao, The internet of things: A survey, Inf. Syst. Front., vol. 17, no. 2, pp. 243-259, 2015.
[4]
L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Comput. Networks, vol. 54, no. 15, pp. 2787-2805, 2010.
[5]
S. C. Li, L. D. Xu, and S. S. Zhao, 5G internet of things: A survey, J. Ind. Inf. Integr., vol. 10, pp. 1-9, 2018.
[6]
M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and L. Ladid, Internet of things in the 5G era: Enablers, architecture, and business models, IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 510-527, 2016.
[7]
L. Li, X. G. Hu, K. Chen, and K. T. He, The applications of WiFi-based wireless sensor network in internet of things and smart grid, in Proc. 6th IEEE Conf. Industrial Electronics and Applications, Beijing, China, 2011, pp. 789-793.
DOI
[8]
M. Gerla, E. K. Lee, G. Pau, and U. Lee, Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds, in Proc. 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, South Korea, 2014, pp. 241-246.
DOI
[9]
P. Kolodzy and I. Avoidance, Spectrum policy task force, Tech. Rep. 02–135, Federal Communications Commission, Washington, DC, USA, 2002.
[10]
V. Blaschke, H. Jaekel, T. Renk, C. Kloeck, and F. K. Jondral, Occupation measurements supporting dynamic spectrum allocation for cognitive radio design, in Proc. 2nd Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Orlando, FL, USA, 2007, pp. 50-57.
DOI
[11]
J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal, IEEE Personal Commun., vol. 6, no. 4, pp. 13-18, 1999.
[12]
S. Haykin, Cognitive radio: Brain-empowered wireless communications, IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, 2005.
[13]
B. B. Wang, Y. L. Wu, and K. J. R. Liu, Game theory for cognitive radio networks: An overview, Comput. Networks, vol. 54, no. 14, pp. 2537-2561, 2010.
[14]
D. Stojadinovic, F. A. P. de Figueiredo, P. Maddala, I. Seskar, and W. Trappe, SC2 CIL: Evaluating the spectrum voxel announcement benefits, in Proc. 2019 IEEE Int. Symp. Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, 2019, pp. 1-6.
DOI
[15]
F. A. P. de Figueiredo, D. Stojadinovic, P. Maddala, R. Mennes, I. Jabandžić, X. J. Jiao, and I. Moerman, Scatter Phy: A physical layer for the DARPA spectrum collaboration challenge, in Proc. 2019 IEEE Int. Symp. Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, 2019, pp. 1-6.
DOI
[16]
H. J. Sun, A. Nallanathan, C. X. Wang, and Y. F. Chen, Wideband spectrum sensing for cognitive radio networks: A survey, IEEE Wirel. Commun., vol. 20, no. 2, pp. 74-81, 2013.
[17]
J. E. Salt and H. H. Nguyen, Performance prediction for energy detection of unknown signals, IEEE Trans. Veh. Technol. vol. 57, no. 6, pp. 3900-3904, 2008.
[18]
M. López-Benítez and F. Casadevall, Improved energy detection spectrum sensing for cognitive radio, IET Commun., vol. 6, no. 8, pp. 785-796, 2012.
[19]
K. Chabbra, G. Mahendru, and P. Banerjee, Effect of dynamic threshold & noise uncertainty in energy detection spectrum sensing technique for cognitive radio systems, in Proc. 2014 Int. Conf. Signal Processing and Integrated Networks (SPIN), Noida, India, 2014, pp. 377-361.
DOI
[20]
D. Cabric, A. Tkachenko, and R. W. Brodersen, Experimental study of spectrum sensing based on energy detection and network cooperation, in Proc. 1st Int. Workshop on Technology and Policy for Accessing Spectrum (TAPAS’06), New York, NY, USA, 2006, p. 12-es.
DOI
[21]
S. Kapoor, S. V. R. K. Rao, and G. Singh, Opportunistic spectrum sensing by employing matched filter in cognitive radio network, in Proc. 2011 Int. Conf. Communication Systems and Network Technologies, Katra, India, 2011, pp. 580-583.
DOI
[22]
D. Cabric, S. M. Mishra, and R. W. Brodersen, Implementation issues in spectrum sensing for cognitive radios, in Proc. Conf. Record of the 38th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, 2004, pp. 772-776.
[23]
F. Salahdine, H. El Ghazi, N. Kaabouch N, and W. F. Fihri, Matched filter detection with dynamic threshold for cognitive radio networks, in Proc. 2015 Int. Conf. Wireless Networks and Mobile Communications (WINCOM), Marrakech, Morocco, 2015, pp. 1-6.
DOI
[24]
H. S. Chen, W. Gao, and D. G. Daut, Spectrum sensing using cyclostationary properties and application to IEEE 802.22 WRAN, in Proc. 2007 IEEE Global Telecommunications Conf., Washington, DC, USA, 2007, pp. 3133-3138.
DOI
[25]
J. Lunden, V. Koivunen, A. Huttunen, and H. V. Poor, Collaborative cyclostationary spectrum sensing for cognitive radio systems, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4182-4195, 2009.
[26]
Z. Ye, J. Grosspietsch, and G. Memik, Spectrum sensing using cyclostationary spectrum density for cognitive radios, in Proc. 2007 IEEE Workshop on Signal Processing Systems, Shanghai, China, 2007, pp. 1-6.
DOI
[27]
D. Bhargavi and C. R. Murthy, Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing, in Proc. IEEE 11th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Marrakech, Morocco, 2010, pp. 1-5.
DOI
[28]
F. F. Digham, M. S. Alouini, and M. K. Simon, On the energy detection of unknown signals over fading channels, IEEE Trans. Commun., vol. 55, no. 1, pp. 21-24, 2007.
[29]
S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, Deep learning models for wireless signal classification with distributed low-cost spectrum sensors, IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 3, pp. 433-445, 2018.
[30]
Q. Q. Cheng, Z. G. Shi, D. N. Nguyen, and E. Dutkiewicz, Deep learning network based spectrum sensing methods for OFDM systems, arXiv preprint arXiv: 1807.09414, 2019.
[31]
Y. B. Cui, X. J. Jing, S. L. Sun, X. H. Wang, D. M. Cheng, and H. Huang, Deep learning based primary user classification in cognitive radios, in Proc. 15th Int. Symp. Communications and Information Technologies (ISCIT), Nara, Japan, 2015, pp. 165-168.
DOI
[32]
G. Ganesan and Y. Li, Cooperative spectrum sensing in cognitive radio networks, in Proc. 1st IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, USA, 2005, pp. 137-143.
[33]
H. F. Chen, M. Zhou, L. Xie, K. Wang, and J. Li, Joint spectrum sensing and resource allocation scheme in cognitive radio networks with spectrum sensing data falsification attack, IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 9181-9191, 2016.
[34]
B. F. Lo and I. F. Akyildiz, Reinforcement learning for cooperative sensing gain in cognitive radio ad hoc networks, Wirel. Netw., vol. 19, no. 6, pp. 1237-1250, 2013.
[35]
J. Lundén, S. R. Kulkarni, V. Koivunen, and H. V. Poor, Multiagent reinforcement learning based spectrum sensing policies for cognitive radio networks, IEEE J. Sel. Top. Signal Process., vol. 7, no. 5, pp. 858-868, 2013.
[36]
Y. Zhang, P. X. Cai, C. Y. Pan, and S. B. Zhang, Multi-agent deep reinforcement learning-based cooperative spectrum sensing with upper confidence bound exploration, IEEE Access, vol. 7, pp. 118 898-118 906, 2019.
[37]
S. H. Lee, D. C. Oh, and Y. H. Lee, Hard decision combining-based cooperative spectrum sensing in cognitive radio systems, in Proc. 2009 Int. Conf. Wireless Communications and Mobile Computing: Connecting the World Wirelessly (IWCMC’09), Leipzig, Germany, 2009, pp. 906-910.
DOI
[38]
J. Ma, G. D. Zhao, and Y. Li, Soft combination and detection for cooperative spectrum sensing in cognitive radio networks, IEEE Trans. Wirel. Commun., vol. 7, no. 11, pp. 4502-4507, 2008.
[39]
M. Mustonen, M. Matinmikko, and A. Mammela, Cooperative spectrum sensing using quantized soft decision combining, in Proc. 4th Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Hannover, Germany, 2009, pp. 1-5.
DOI
[40]
M. Li and M. Diao, Cooperative spectrum sensing algorithm based on majority decision fusion, in Proc. 2nd Int. Conf. Instrumentation, Measurement, Computer, Communication and Control, Harbin, China, 2012, pp. 952-956.
DOI
[41]
A. M. Mikaeil, B. Guo, and Z. J. Wang, Machine learning to data fusion approach for cooperative spectrum sensing, in Proc. 2014 Int. Conf. Cyber-Enabled Distributed Computing and Knowledge Discovery, Shanghai, China, 2014, pp. 429-434.
DOI
[42]
Y. Q. Lu, P. Zhu, D. L. Wang, and M. Fattouche, Machine learning techniques with probability vector for cooperative spectrum sensing in cognitive radio networks, in Proc. 2016 IEEE Wireless Communications and Networking Conf., Doha, Qatar, 2016, pp. 1-6.
DOI
[43]
K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, Machine learning techniques for cooperative spectrum sensing in cognitive radio networks, IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2209-2221, 2013.
[44]
I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Comput. Networks, vol. 50, no. 13, pp. 2127-2159, 2006.
[45]
Q. Zhao and B. M. Sadler, A survey of dynamic spectrum access, IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79-89, 2007.
[46]
M. Ivanov, F. Brännström, A. G. Amat, and P. Popovski, Broadcast coded slotted ALOHA: A finite frame length analysis, IEEE Trans. Commun., vol. 65, no. 2, pp. 651-662, 2017.
[47]
F. Uddin and S. Mahmud, Carrier sensing-based medium access control protocol for WLANs exploiting successive interference cancellation, IEEE Trans. Wirel. Commun., vol. 16, no. 6, pp. 4120-4135, 2017.
[48]
J. R. Cha, K. C. Go, J. H. Kim, and W. C. Park, TDMA-based multi-hop resource reservation protocol for real-time applications in tactical mobile adhoc network, in Proc. 2010 Military Communications Conf., San Jose, CA, USA, 2010, pp. 1936-1941.
DOI
[49]
N. C. Pun, TDMA channel access scheduling with neighbor indirect acknowledgment algorithm (NbIA) for ad-hoc networks, US Patent US7768992, August 3, 2010.
[50]
I. Karthigeyan, B. S. Manoj, and C. S. R. Murthy, A distributed laxity-based priority scheduling scheme for time-sensitive traffic in mobile ad hoc networks, Ad Hoc Netw., vol. 3, no. 1, pp. 27-50, 2005.
[51]
A. P. Shrestha, J. Won, S. J. Yoo, M. Seo, and H. W. Cho, Genetic algorithm based sensing and channel allocation in cognitive ad-hoc networks, in Proc. 2016 Int. Conf. Information and Communication Technology Convergence, Jeju, South Korea, 2016, pp. 109-111.
DOI
[52]
D. Arivudainambi and D. Rekha, Broadcast scheduling problem in TDMA ad hoc networks using immune genetic algorithm, Int. J. Comput. Commun. Control, vol. 8, no. 1, pp. 18-29, 2013.
[53]
A. E. Paschos, V. M. Kapinas, G. D. Ntouni, L. J. Hadjileontiadis, and G. K. Karagiannidis, Dynamic spectrum sensing through accelerated particle swarm optimization, in Proc. 25th IEEE Telecommunication Forum, Belgrade, Serbia, 2017, pp. 1-4.
DOI
[54]
B. Atakan and O. B. Akan, Biological foraging-inspired communication in intermittently connected mobile cognitive radio ad hoc networks, IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2651-2658, 2012.
[55]
L. Yu, C. Liu, and W. Y. Hu, Spectrum allocation algorithm in cognitive ad-hoc networks with high energy efficiency, in Proc. 2010 Int. Conf. Green Circuits and Systems, Shanghai, China, 2010, pp. 349-354.
DOI
[56]
J. Lunden, V. Koivunen, S. R. Kulkarni, and H. V. Poor, Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks, presented at 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), Aachen, Germany, 2011, pp. 642-646.
DOI
[57]
C. Y. Lv, J. Y. Wang, and F. Yu, Dynamic spectrum allocation using q-learning in cognitive radio systems, Appl. Mech. Mater., vols. 427–429, pp. 1579-1584, 2013.
[58]
Y. L. Teng, F. R. Yu, K. Han, Y. F. Wei, and Y. Zhang, Reinforcement-learning-based double auction design for dynamic spectrum access in cognitive radio networks, Wirel. Pers. Commun., vol. 69, no. 2, pp. 771-791, 2013.
[59]
F. Li, K. Y. Lam, Z. G. Sheng, X. G. Zhang, K. L. Zhao, and L. Wang, Q-learning-based dynamic spectrum access in cognitive industrial internet of things, Mobile Netw. Appl., vol. 23, no. 6, pp. 1636-1644, 2018.
[60]
S. G. Wang, H. P. Liu, P. H. Gomes, and B. Krishnamachari, Deep reinforcement learning for dynamic multichannel access in wireless networks, IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257-265, 2018.
[61]
X. J. Li, J. Fang, W. Cheng, H. P. Duan, Z. Chen, and H. B. Li, Intelligent power control for spectrum sharing in cognitive radios: A deep reinforcement learning approach, IEEE Access, vol. 6, pp. 25 463-25 473, 2018.
[62]
R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, Network information flow, IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216, 2000.
[63]
S. C. Liew, S. L. Zhang, and L. Lu, Physical-layer network coding: Tutorial, survey, and beyond, Phys. Commun., vol. 6, pp. 4-42, 2013.
[64]
R. Bassoli, H. Marques, J. Rodriguez, K. W. Shum, and R. Tafazolli, Network coding theory: A survey, IEEE Commun. Surv. Tutorials, vol. 15, no. 4, pp. 1950-1978, 2013.
[65]
M. A. Iqbal, B. Dai, B. X. Huang, A. Hassan, and S. Yu, Survey of network coding-aware routing protocols in wireless networks, J. Netw. Comput. Appl., vol. 34, no. 6, pp. 1956-1970, 2011.
[66]
M. Z. Farooqi, S. M. Tabassum, M. H. Rehmani, and Y. Saleem, A survey on network coding, J. Netw. Comput. Appl., vol. 46, no. 3, pp. 166-181, 2014.
[67]
S. Y. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371-381, 2003.
[68]
R. Koetter and M. Medard, An algebraic approach to network coding, IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782-795, 2003.
[69]
T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, The benefits of coding over routing in a randomized setting, in Proc. 2003 IEEE Int. Symp. Information Theory, Yokohama, Japan, 2003, p. 442.
DOI
[70]
S. L. Fong and R. W. Yeung, Variable-rate linear network coding, IEEE Trans. Inf. Theory Workshop, vol. 56, no. 6, pp. 2618-2625, 2010.
[71]
S. Maheshwar, Z. P. Li, and B. C. Li, Bounding the coding advantage of combination network coding in undirected networks, IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 570-584, 2012.
[72]
E. Erez and M. Feder, Efficient network codes for cyclic networks, in Proc. 2005 Int. Symp. Information Theory, Adelaide, Australia, 2005, pp. 1982-1986.
DOI
[73]
N. Cai and R. W. Yeung, Network coding and error correction, in Proc. 2002 IEEE Information Theory Workshop, Bangalore, India, 2002, pp. 119-122.
DOI
[74]
J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, A digital fountain approach to reliable distribution of bulk data, ACM SIGCOMM Comput. Commun. Rev., vol. 28, no. 4, pp. 56-67, 1998.
[75]
D. J. C. MacKay, Fountain codes, IEE Proc. Commun., vol. 152, no. 6, pp. 1062-1068, 2005.
[76]
M. Luby, LT codes, in Proc. 43rd Symp. Foundations of Computer Science, Vancouver, Canada, 2002, pp. 271-280.
[77]
C. M. Chen, Y. P. Chen, T. C. Shen, and J. K. Zao, A practical optimization framework for the degree distribution in LT Codes, IEICE Trans. Commun., vol. E96.B, no. 11, pp. 2807-2815, 2013.
[78]
C. M. Chen, Y. P. Chen, T. C. Shen and J. K. Zao, On the optimization of degree distributions in LT code with covariance matrix adaptation evolution strategy, in Proc. 2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain, 2010, pp. 1-8.
DOI
[79]
S. Puducheri, J. Kliewer, and T. E. Fuja, The design and performance of distributed LT codes, IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3740-3754, 2007.
[80]
E. Nachmani, Y. Be’ery, and D. Burshtein, Learning to decode linear codes using deep learning, in Proc. 54th Ann. Allerton Conf. Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2016, pp. 341-346.
DOI
[81]
Y. Cui, L. Wang, X. Wang, H. Y. Wang, and Y. N. Wang, FMTCP: A fountain code-based multipath transmission control protocol, IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 465-478, 2015.
[82]
Y. Erlich and D. Zielinski, DNA fountain enables a robust and efficient storage architecture, Science, vol. 355, no. 6328, pp. 950-954, 2017.
[83]
B. S. Yi, M. Xiang, T. Q. Huang, H. J. Huang, K. Qiu, and W. Z. Li, Data gathering with distributed rateless coding based on enhanced online fountain codes over wireless sensor networks, AEU - Int.J. Electron. Commun., vol. 92, pp. 86-92, 2018.
[84]
D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z. X. Xiong, Scalable video multicast using expanding window fountain codes, IEEE Trans. Multimed., vol. 11, no. 6, pp. 1094-1104, 2009.
[85]
P. X. Cai, Y. Zhang, C. Y. Pan, and J. Song, Online fountain codes with unequal recovery time, IEEE Commun. Lett., vol. 23, no. 7, pp. 1136-1140, 2019.
[86]
A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, Growth codes: Maximizing sensor network data persistence, in Proc. 2006 Conf. Applications, Technologies, Architectures, and Protocols for Computer Communications, Pisa, Italy, 2006, pp. 255-266.
DOI
[87]
Y. Cassuto and A. Shokrollahi, Online fountain codes with low overhead, IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3137-3149, 2015.
[88]
S. Katti, H. Rahul, W. J. Hu, D. Katabi, M. Medard, and J. Crowcroft, XORs in the air: Practical wireless network coding, IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 497-510, 2008.
[89]
H. D. T. Nguyen, L. N. Tran, and E. K. Hong, On transmission efficiency for wireless broadcast using network coding and fountain codes, IEEE Commun. Lett., vol. 15, no. 5, pp. 569-571, 2011.
[90]
S. H. Yang and R. W. Yeung, Batched sparse codes, IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5322-5346, 2014.
[91]
S. H. Yang, T. C. Ng, and R. W. Yeung, Finite-length analysis of BATS codes, IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 322-348, 2018.
[92]
H. K. Zhao, S. H. Yang, and G. N. Feng, Fast degree-distribution optimization for BATS codes, Sci. China Inf. Sci., vol. 60, no. 10, p. 102 301, 2017.
[93]
B. Tang, S. H. Yang, B. L. Ye, S. Guo, and S. L. Lu, Near-optimal one-sided scheduling for coded segmented network coding, IEEE Trans. Comput., vol. 65, no. 3, pp. 929-939, 2016.
[94]
H. H. F. Yin, S. H. Yang, Q. Q. Zhou, and L. M. L. Yung, Adaptive recoding for BATS codes, in Proc. 2016 IEEE Int. Symp. Information Theory, Barcelona, Spain, 2016, pp. 2349-2353.
DOI
[95]
X. L. Xu, Y. Zeng, Y. L. Guan, and L. Yuan, BATS code with unequal error protection, presented at 2016 IEEE Int. Conf. Communication Systems (ICCS), Shenzhen, China, 2016, pp. 1-6.
DOI
[96]
H. H. F. Yin, X. L. Xu, K. H. Ng, Y. L. Guan, and R. W. Yeung, Packet efficiency of BATS coding on wireless relay network with overhearing, in Proc. 2019 IEEE Int. Symp. Information Theory (ISIT), Paris, France, 2019, pp. 1967-1971.
DOI
[97]
Z. H. Zhou, C. D. Li, S. H. Yang, and X. Guang, Practical inner codes for BATS codes in multi-hop wireless networks, IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2751-2762, 2019.
[98]
S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Trans. Math. Softw., vol. 37, no. 4, p. 44, 2011.
[99]
J. L. Hu and M. P. Wellman, Multiagent reinforcement learning: Theoretical framework and an algorithm, in Proc. 15th Int. Conf. Machine Learning, Madison, WI, USA, 1998, pp. 242-250.
[100]
H. Z. Zhang, K. R. Sun, Q. Y. Huang, Y. G. Wen, and D. P. Wu, FUN coding: Design and analysis, IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3340-3353, 2016.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 February 2020
Accepted: 09 June 2020
Published: 30 June 2020
Issue date: June 2020

Copyright

© All articles included in the journal are copyrighted to the ITU and TUP.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61790553), Shenzhen Science and Technology Plan Projects (No. JCYJ20180306170614484), and Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX04).

Rights and permissions

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

Return