Journal Home > Volume 19 , Issue 3

MicroRNAs (miRNAs) are a class of endogenously expressed non-coding regulators of the genome with an ability to mediate a variety of biological and pathological processes. There is growing evidence demonstrating frequent dysregulation of microRNAs in cancer cells, which is associated with tumor initiation, development, migration, invasion, resisting cell death, and drug resistance. Studies have shown that modulation of these small RNAs is a novel and promising therapeutic tool in the treatment of a variety of diseases, especially cancer, due to their broad influence on multiple cellular processes. However, suboptimal delivery of the appropriate miRNA to the cancer sites, quick degradation by nucleases in the blood circulation, and off target effects have limited their research and clinical applications. Therefore, there is a pressing need to improve the therapeutic efficacy of miRNA modulators, while at the same time reducing their toxicities. Several delivery vehicles for miRNA modulators have been shown to be effective in vitro and in vivo. In this review, we will discuss the role and importance of miRNAs in cancer and provide perspectives on currently available carriers for miRNA modulation. We will also summarize the challenges and prospects for the clinical translation of miRNA-based therapeutic strategies.

Full text
About this article

Modulating microRNAs in cancer: next-generation therapies

Show Author's information Nahid Arghiani1,2Khalid Shah1,2,3 ( )
Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA


MicroRNAs (miRNAs) are a class of endogenously expressed non-coding regulators of the genome with an ability to mediate a variety of biological and pathological processes. There is growing evidence demonstrating frequent dysregulation of microRNAs in cancer cells, which is associated with tumor initiation, development, migration, invasion, resisting cell death, and drug resistance. Studies have shown that modulation of these small RNAs is a novel and promising therapeutic tool in the treatment of a variety of diseases, especially cancer, due to their broad influence on multiple cellular processes. However, suboptimal delivery of the appropriate miRNA to the cancer sites, quick degradation by nucleases in the blood circulation, and off target effects have limited their research and clinical applications. Therefore, there is a pressing need to improve the therapeutic efficacy of miRNA modulators, while at the same time reducing their toxicities. Several delivery vehicles for miRNA modulators have been shown to be effective in vitro and in vivo. In this review, we will discuss the role and importance of miRNAs in cancer and provide perspectives on currently available carriers for miRNA modulation. We will also summarize the challenges and prospects for the clinical translation of miRNA-based therapeutic strategies.

Keywords: delivery systems, cancer therapy, MiRNAs, clinical translation, dysregulation



Anglicheau D, Muthukumar T, Suthanthiran M. MicroRNAs: small RNAs with big effects. Transplantation. 2010; 90: 105-12.


Martinez VD, Cohn DE, Telkar N, Minatel BC, Pewarchuk ME, Marshall EA, et al. Profiling the small non-coding RNA transcriptome of the human placenta. Sci Data. 2021; 8: 166.


Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016; 1: 15004.

Sharad S, Kapur S. Therapeutic implication of miRNA in human disease. In: Walayat A, Yang M, Xiao D, editors. Antisense Therapy. London: IntechOpen; 2018. p. 82738.

Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 2015; 8: re3.


Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012; 18: 215-22.


Zeinali T, Mansoori B, Mohammadi A, Baradaran B. Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother. 2019; 109: 195-207.


Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology. 2014; 59: 555-66.


Misiewicz-Krzeminska I, Krzeminski P, Corchete LA, Quwainder D, Rojas EA, Herreero AB, et al. Factors regulating microRNA expression and function in multiple myeloma. Noncoding RNA. 2019; 5: 9.


Xiao J, Lin H, Luo X, Luo X, Wang Z. MiR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J. 2011; 30: 5021.


Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010; 17: 193-9.


Ma J, Gong W, Liu S, Li Q, Guo M, Wang J, et al. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3. Tumour Biol. 2018; 40: 1010428317731369.


Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KL, et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 2010; 24: 2754-9.


Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008; 68: 7846-54.


Jiang RL, Li Y. Regulation of miRNA pathway and roles of microRNAs in tumorigenesis and metastasis. Human Genet Embryol S. 2013; 2: 2161-436.


Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018; 37: 5-15.


Yoshida K, Yamamoto Y, Ochiya T. MiRNA signaling networks in cancer stem cells. Regen Ther. 2021; 17: 1-7.


Diepenbruck M, Tiede S, Saxena M, Ivanek R, Kalathur RKR, Lüönd F, et al. MiR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis. Nat Commun. 2017; 8: 1168.


Zhu X, Pan H, Liu L. Long noncoding RNA network: Novel insight into hepatocellular carcinoma metastasis (Review). Int J Mol Med. 2021; 48: 1-12.


Arghiani N, Matin MM. MiR-21: A key small molecule with great effects in combination cancer therapy. Nucleic Acid Ther. 2021; 31: 271-83.


Cai Z, Zhang F, Chen W, Zhang J, Li H. MiRNAs: A promising target in the chemoresistance of bladder cancer. Onco Targets Ther. 2019; 12: 11805-16.


An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B. 2017; 7: 38-51.


Jamialahmadi K, Zahedipour F, Karimi G. The role of microRNAs on doxorubicin drug resistance in breast cancer. J Pharm Pharmacol. 2021; 73: 997-1006.


Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y, et al. MiRNAs in radiotherapy resistance of nasopharyngeal carcinoma. J Cancer. 2020; 11: 3976-85.


Li D, Tolleson WH, Yu D, Chen S, Guo L, Xiao W, et al. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2019; 37: 180-214.


Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int. 2015; 2015: 125094.


Arneth B. Tumor microenvironment. Medicina. 2019; 56: 15.


Caner A, Asik E, Ozpolat B. SRC signaling in cancer and tumor microenvironment. Adv Exp Med Biol. 2021; 1270: 57-71.


Antomarchi J, Ambrosetti D, Cohen C, Delotte J, Chevallier A, Karimdjee-Soilihi B, et al. Immunosuppressive tumor microenvironment status and histological grading of endometrial carcinoma. Cancer Microenviron. 2019; 12: 169-79.


Avraham R, Yarden Y. Regulation of signalling by microRNAs. Biochem Soc Trans. 2012; 40: 26-30.


Eichelmann AK, Matuszcak C, Hummel R, Haier J. Role of miRNAs in cell signaling of cancer associated fibroblasts. Int J Biochem Cell Biol. 2018; 101: 94-102.


Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in genitourinary cancers. Cells. 2019; 8: 1619.


Wang R, Sun Y, Yu W, Yan Y, Qiao M, Jiang R, et al. Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. J Exp Clin Cancer Res. 2019; 38: 20.


Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011; 30: 4231-42.


Loh HY, Norman BP, Lai KS, Rahman NM, Alitheen NB, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci. 2019; 20: 4940.


Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, et al. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget. 2017; 8: 115787-802.


Wang H, Li K, Mei Y, Huang X, Li Z, Yang Q, et al. Sp1 suppresses miR-3178 to promote the metastasis invasion cascade via upregulation of TRIOBP. Mol Ther Nucleic Acids. 2018; 12: 1-11.


Yang H, Zhang H, Ge S, Nng T, Bai M, Li J, et al. Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther. 2018; 26: 2466-75.


Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011; 6: e19139.


Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012; 31: 3513-23.


Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negshdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol. 2019; 234: 1099-110.


Chung HJ, Choi YE, Kim ES, Han YH, Park MJ, Bae IH. miR-29b attenuates tumorigenicity and stemness maintenance in human glioblastoma multiforme by directly targeting BCL2L2. Oncotarget. 2015; 6: 18429-44.


Chen S, Zhang Y, Kuzel TM, Zhang B. Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron. 2015; 2: 1-8.


Marcinkowska M, Sobierajska E, Stanczyk M, Janaszewska A, Chworos A, Klajnert-Maculewicz B. Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody-trastuzumab: the new approach of a well-known strategy. Polymers. 2018; 10: 187.


Sirotkin AV, Alexa R, Kišová G, Harrath AH, Alwasel S, Ovcharenko D, et al. MicroRNAs control transcription factor NF-kB (p65) expression in human ovarian cells. Funct Integr Genomics. 2015; 15: 271-5.


An Y, Yang Q. MiR-21 modulates the polarization of macrophages and increases the effects of M2 macrophages on promoting the chemoresistance of ovarian cancer. Life Sci. 2020; 242: 117162.


Afshar AS, Xu J, Goutsias J. Integrative identification of deregulated miRNA/TF-mediated gene regulatory loops and networks in prostate cancer. PLoS One. 2014; 9: e100806.


Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol. 2020; 228: e13353.


Nakano T, Chen IH, Wang CC, Chen PJ, Tseng HP, Huang KT, et al. Circulating exosomal miR-92b: Its role for cancer immunoediting and clinical value for prediction of posttransplant hepatocellular carcinoma recurrence. Am J Transplant. 2019; 19: 3250-62.


Kogure A, Kosaka N, Ochiya T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci. 2019; 26: 7.


Dai X, Huang R, Hu S, Zhou Y, Sun X, Gui P, et al. A novel miR-0308-3p revealed by miRNA-seq of HBV-positive hepatocellular carcinoma suppresses cell proliferation and promotes G1/S arrest by targeting double CDK6/Cyclin D1 genes. Cell Biosci. 2020; 10: 24.


Lee WH, Chen KP, Wang K, Huang HC, Juan HF. Characterizing the cancer-associated microbiome with small RNA sequencing data. Biochem Biophys Res Commun. 2020; 522: 776-82.


Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019; 10: 478.


Kim H, Kim J, Kim K, Chang H, You K, Kim VN. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3’ end modification. Nucleic Acids Res. 2019; 47: 2630-40.


Wang N, Zheng J, Chen Z, Liu Y, Dura B, Kwak M, et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat Commun. 2019; 10: 95.


Bhere D, Arghiani N, Lechtich ER, Yao Y, Alsaab S, Bei F, et al. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep. 2020; 10: 1779.


Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007; 67: 8994-9000.


Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018; 15: 338-52.

Sharad S, Kapur S. MiRNA-based therapeutics in oncology, realities, and challenges. In: Balacescu O, Visan S, Baldasici O, Balacescu L, editors. Antisense Therapy. London: IntechOpen. 2018; 31.

Zhong S, Jeong JH, Chen Z, Chen Z, Luo JL. Targeting tumor microenvironment by small-molecule inhibitors. Transl Oncol. 2020; 13: 57-69.


Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017; 77: 6812-7.


Nam L, Coll C, Erthal LCS, de la Torre C, Serrano D, Martínez-Máñez R, et al. Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials (Basel). 2018; 11: 779.


Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015; 81: 128-41.

Ladame S, Cheng JY. Nanotechnology and drug delivery. In: Delcassian D, Patel AK, editors. Bioengineering innovative solutions for cancer. Cambridge: Academic Press; 2020. p. 197-219.

Rietwyk S, Peer D. Next-generation lipids in RNA interference therapeutics. ACS Nano. 2017; 11: 7572-86.


Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010; 18: 1650-6.


Zhang JS, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev. 2005; 57: 689-98.


Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011; 19: 1116-22.

Peplow PV, Martinez B, Calin GA, Esquela-Kerscher A. Strategies for safe and targeted delivery of microRNA therapeutics. In: Myoung SS, Kasinski AL, editors. MicroRNAs in diseases and disorders. London: Royal Society of Chemistry; 2019. p. 386-415.
Malik B. Small non-coding RNAs as a tool for personalized therapy in familial cancers. In: Malik SS, Masood N, Sherrard A, Bishop PN, editors. AGO-driven non-coding RNAs. Cambridge: Academic Press; 2019. p. 179-208.

Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther. 2014; 13: 2352-60.


Bai Z, Wei J, Yu C, Han X, Qin X, Zhanf C, et al. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B. 2019; 7: 1209-25.


Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019; 9: 195-204.


Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017; 22: 1404.


Ren L, Huang C, Liu YH, Yu Y, Lin L, Wen LJ. The effect and mechanism of microRNA-21 on cis-dichlorodiamineplatinum resistance in lung cancer cell strain. Zhonghua Yi Xue Za Zhi. 2016; 96: 1454-8.


Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloid Surface B Biointerfaces. 2017; 159: 217-31.


Navarro SM, Morgan TW, Astete CE, Stout RW, Coulon D, Mottram P, et al. Biodistribution and toxicity of orally administered poly (lactic-co-glycolic) acid nanoparticles to F344 rats for 21 days. Nanomedicine. 2016; 11: 1653-69.


Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trac-Trend Anal Chem. 2016; 80: 30-40.


Fernandez-Piñeiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 2017; 35: 350-60.


Zhang T, Xue X, He D, Hsieh JT. A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett. 2015; 365: 156-65.


Debnath S, Karan S, Debnath M, Dash J, Chatterjee TK. Poly-L-lysine inhibits tumor angiogenesis and induces apoptosis in ehrlich ascites carcinoma and in sarcoma S-180 tumor. Asian Pac J Cancer Prev. 2017; 18: 2255-68.


Shukla RS, Qin B, Cheng K. Peptides used in the delivery of small noncoding RNA. Mol Pharm. 2014; 11: 3395-408.


Jin H, Yu Y, Chrisler WB, Xiong Y, Hu D, Lei C. Delivery of microRNA-10b with polylysine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer. 2012; 6: 9-19.


Li T, Meng Z, Zhu X, Gan H, Gu R, Wu Z, et al. New synthetic peptide with efficacy for heparin reversal and low toxicity and immunogenicity in comparison to protamine sulfate. Biochem Biophys Res Commun. 2015; 467: 497-502.


Yoo H, Mok H. Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells. Arch Pharm Res. 2015; 38: 129-36.


Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules. 2019; 9: 22.


Mcclorey G, Banerjee S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines. 2018; 6: 51.


Oh B, Song H, Lee D, Oh J, Kim G, Ihm SH, et al. Anti-cancer effect of R3V6 peptide-mediated delivery of an anti-microRNA-21 antisense-oligodeoxynucleotide in a glioblastoma animal model. J Drug Target. 2017; 25: 132-9.


Song H, Oh B, Choi M, Oh J, Lee M. Delivery of anti-microRNA-21 antisense-oligodeoxynucleotide using amphiphilic peptides for glioblastoma gene therapy. J Drug Target. 2015; 23: 360-70.


Takei Y, Takigahira M, Mihara K, Tarumi Y, Yanagihara K. The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Res. 2011; 71: 1442-53.


Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010; 18: 181-7.


Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007; 104: 15472-7.


Ben-Shushan D, Markovsky E, Gibori H, Triam G, Scomparin A, Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res. 2014; 4: 38-49.


Di Pietro P, Strano G, Zuccarello L, Satriano C. Gold and silver nanoparticles for applications in theranostics. Curr Top Med Chem. 2016; 16: 3069-102.


Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2017; 23: 47.


El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine. 2018; 13: 953-71.


Zhao MX, Zhu BJ. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res Lett. 2016; 11: 207.


Li JM, Zhao MX, Su H, Wang YY, Tan CP, Ji LN, et al. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials. 2011; 32: 7978-87.


Choi AO, Brown SE, Szyf M, Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med (Berl). 2008; 86: 291-302.


Dobrovolskaia MA, Mcneil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007; 2: 469-78.


Valentini F, Mari E, Zicari A, Calcaterra A, Talano M, Scioli MG, et al. Metal free graphene oxide (GO) nanosheets and pristine-single wall carbon nanotubes (p-SWCNTs) biocompatibility investigation: A comparative study in different human cell lines. Int J Mol Sci. 2018; 19: 1316.


Yang HW, Huang CY, Lin CW, Liu HL, Huang CW, Liao SS, et al. Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials. 2014; 35: 6534-42.


Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011; 17: 349-64.

Grumezescu AM. Delivering miRNA modulators for cancer treatment. In: Estanqueiro MVH, Lobo JMS, Amaral H. Drug targeting and stimuli sensitive drug delivery systems. London: William Andrew Publishing. 2018: 517-65.
Mitra AK, Cholkar K, Mandal A. Electrospun Nanofibers in Drug Delivery: Fabrication, Advances, and Biomedical Applications. In: Agrahari V, Agrahari V, Meng J, Mitra AK, editors. Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Amsterdam: Elsevier; 2017. p. 189-215.

Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, et al. Ectrospinning of nanofibers and their applications for energy devices. J Nanomat. 2015; 16: 1-21.


Sasikanth K, Nama S, Suresh S, Brahmaiah B. Nanofibers-a new trend in nano drug delivery systems. Pharma Innovation. 2013; 2: 118.


Orellana EA, Tenneti S, Rangasamy L, Lyle LT, Low PS, Kasinski AL. FolamiRs: ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Sci Transl Med. 2017; 9: 1-10.


He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, et al. Aptamer-based targeted drug deliverysystems: Current potential and challenges. Curr Med Chem. 2020; 27: 2189-219.


Esposito CL, Catuogno S, de Franciscis V. Aptamer-mediated selective delivery of short RNA therapeutics in cancer cells. J RNAi Gene Silencing. 2014; 10: 500-6.


Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, et al. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting sem cell marker CD133. Mol Ther. 2019; 27: 1252-61.


Guo S, Huang F, Guo P. Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther. 2006; 13: 814-20.


Ye X, Liu Z, Hemida MG, Yang D. Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One. 2011; 6: e21215.

Shegokar R. Lipid nanocarriers for delivery of poorly soluble and poorly permeable drugs. In: Kovacevic AB, editor. Nanopharmaceuticals. Amsterdam: Elsevier; 2020. p. 151-74.

Khalil IA, Younis MA, Kimura S, Harashima H. Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull. 2020; 43: 584-95.


Costa PM, Cardoso AL, Custódia C, Cunha P, de Almedia LP, de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. J Control Release. 2015; 207: 31-9.


Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021; 6: e10213.


Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res. 2021; 11: 1323-39.


Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, Abashkin V, Scharbin D, Bryszewska M. Dendrimers show promise for siRNA and microRNA therapeutics. Pharmaceutics. 2018; 10: 126.


Yazdian-Robati R, Ramezani M, Jalalian SH, Abnous K, Taghdisi SM. Targeted delivery of epirubicin to cancer cells by polyvalent aptamer system in vitro and in vivo. Pharm Res. 2016; 33: 2289-97.


Hao Y, Kieft JS. Three-way junction conformation dictates self-association of phage packaging RNAs. RNA Biol. 2016; 13: 635-45.


Hao C, Li X, Tian C, Jiang W, Wang G, Mao C. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat Commun. 2014; 5: 3890.


Binzel DW, Shu Y, Li H, Sun M, Zhang Q, Shu D, et al. Specific delivery of miRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol Ther. 2016; 24: 1267-77.

Jayandharan GR. Viral-and non-viral-based hybrid vectors for gene therapy. In: Mahato M, Jayandharan GR, Vemula PK, editors. Gene and cell therapy: biology and applications. New York: Springer; 2018. p. 111-30.

Dasgupta I, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021; 4: 10.


Frank AM, Weidner T, Brynza J, Uckert W, Buchholz CJ, Hartmann J. CD8-Specific designed ankyrin repeat proteins improve selective gene delivery into human and primate T lymphocytes. Hum Gene Ther. 2020; 31: 679-91.


Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010; 16: 198-204.


Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, Mclntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003; 348: 255-6.


Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010; 467: 318-22.


Zhang JH, Du AL, Wang L, Wang XY, Gao JH, Wang TY. Episomal lentiviral vector-mediated miR-145 overexpression inhibits proliferation and induces apoptosis of human esophageal carcinomas cells. Recent Pat Anticancer Drug Discov. 2016; 11: 453-60.


Aravalli RN. Development of microRNA therapeutics for hepatocellular carcinoma. Diagnostics (Basel). 2013; 3: 170-91.


Bofill-De Ros X, Gironella M, Fillat C. MiR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol Ther. 2014; 22: 1665-77.


Kim J, Kim PH, Kim SW, Yun CO. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials. 2012; 33: 1838-50.

Fernandes TG, Diogo MM, Cabral JMS. Bioengineering strategies for gene delivery. In: Shams S, Silva EA, editors. Engineering strategies for regenerative medicine. Academic Press; 2020. p. 107-48.

Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D. Molecular design for recombinant adeno-associated virus (rAAV) vector production. Appl Microbiol Biotechnol. 2018; 102: 1045-54.


Latronico MV, Condorelli G. Therapeutic use of microRNAs in myocardial diseases. Curr Heart Fail Rep. 2011; 8: 193-7.

Brunetti-Pierri N. AAV vector-based gene therapy, progress and current challenges. In Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. New York: Springer; 2017. p. 77-112.

Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol. 2013; 36: 1-22.


Bhere D, Tamura K, Wakimoto H, Choi SH, Purow B, Debatisse J, et al. MicroRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol. 2018; 20: 215-24.

Sonawane SH, Bhanvase BA, Sivakumar M. Virus-like particles: nano-carriers in targeted therapeutics. In: Saha G, Saudagar P, Dubey VK, editors. Encapsulation of active molecules and their delivery system. Amsterdam: Elsevier; 2020. p. 197.

Yao Y, Jia T, Pan Y, Gou H, Li Y, Sun Y, et al. Using a novel microRNA delivery system to inhibit osteoclastogenesis. Int J Mol Sci. 2015; 16: 8337-50.


Pushko P, Pumpens P, Grens E. Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology. 2013; 56: 141-65.


Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA phage biology in a metagenomic era. Viruses. 2018; 10: 386.

Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev. Published online first: March 30, 2021. DOI: 10.1093/femsre/fuab019.
Gerrard JA, Domigan LJ. Virus-derived nanoparticles. In: Dashti NH, Sainsbury F, editors. Protein nanotechnology. New York: Springer; 2020. p. 149-62.

Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J. 2012; 279: 1198-208.


Sun Y, Sun Y, Zhao R. Establishment of microRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide. J Biosci Bioeng. 2017; 124: 242-9.


Hoffmann DB, Böker KO, Schneider S, Eckermann-Felkl E, Schuder A, Komrakova M, et al. In vivo siRNA delivery using JC virus-like particles decreases the expression of RANKL in rats. Mol Ther Nucleic Acids. 2016; 5: e298.


Chao CN, Yang YH, Wu MS, Chou MC, Fang CY, Lin MC, et al. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector. Sci Rep. 2018; 8: 2213.


Chen W, Kang T, Yuan R, Shao C, Jing S. Immunogenicity and protective potency of Norovirus GII.17 virus-like particle-based vaccine. Biotechnol Lett. 2020; 42: 1211-8.


Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007; 110: 103-11.


Galaway FA, Stockley PG. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm. 2013; 10: 59-68.


Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target. 2020; 28: 129-41.


Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018; 17: 147.


del Pozo-Acebo L, Hazas MLL, Tomé-Carneiro J, Gil-Cabrerizo P, San-Cristobal R, Busto R, et al. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy. Int J Mol Sci. 2021; 22: 1105.


Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014; 445: 381-7.


Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013; 21: 185-91.


Wang Y, Chen X, Tian B, Liu J, Yang L, Zeng L, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics. 2017; 7: 1360-72.


Lu M, Xing H, Xun Z, Yang T, Ding P, Cai C, et al. Exosome-based small RNA delivery: progress and prospects. Asian J Pharm Sci. 2018; 13: 1-11.


Morishita M, Takahashi Y, Nishikawa M, Sano K, Kato K, Yamashita T, et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci. 2015; 104: 705-13.


Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013; 165: 77-84.


Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22.

Orlando G, Piemonti L, Ricordi C, Stratta RJ, eds. Cellular therapies in preclinical and clinical islet transplantation: Mesenchymal stem cells. In: Korsgren O, Scholz H, editors. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. Cambridge: Academic Press; 2020. p. 821-31.

Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm. 2021; 600: 120477.


Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci. 2020; 77: 2771-94.


Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev. 2012; 64: 739-48.


Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids. 2013; 2: e126.


Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget. 2013; 4: 346-61.


Zhang CL, Huang T, Wu BL, He WX, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017; 8: 75756-66.


Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, et al. Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cells. 2020; 9: 563.


Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, de Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019; 30: 114-27.


Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014; 6: 1967-84.


Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase Ⅰ study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017; 35: 180-8.


Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase Ⅰ study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020; 122: 1630-7.


Titze-De-Almeida R, David C, Titze-De-Almeida SS. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res. 2017; 34: 1339-63.


Kreth S, Hübner M, Hinske LC. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth Analg. 2018; 126: 670-81.


Reid G, Johnson TG, van Zandwijk N. Manipulating microRNAs for the treatment of malignant pleural mesothelioma: Past, present and future. Front Oncol. 2020; 10: 105.


van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase Ⅰ, open-label, dose-escalation study. Lancet Oncol. 2017; 18: 1386-96.


Bajan S, Hutvagner G. RNA-based therapeutics: From antisense oligonucleotides to miRNAs. Cells. 2020; 9: 137.


Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. MicroRNA therapeutics in cancer - an emerging concept. EBioMedicine. 2016; 12: 34-42.

Faintuch J, Faintuch S. Non-coding RNA therapy in cancer. In: Souckova K, Ivkovic TC, Slaby O, editors. Precision medicine for investigators, practitioners and providers. Cambridge: Academic Press; 2020. p. 211-20.

Segal M, Biscans A, Gilles ME, Anastasiadou E, de Luca R, Lim J, et al. Hydrophobically modified let-7b miRNA enhances biodistribution to NSCLC and downregulates HMGA2 in vivo. Mol Ther Nucleic Acids. 2020; 19: 267-77.


Hossian A, Mackenzie GG. Mattheolabakis G. MiRNAs in gastrointestinal diseases: can we effectively deliver RNA-based therapeutics orally? Nanomedicine (Lond). 2019; 14: 2873-89.


Tao H, Zhao J, Liu T, Cai Y, Zhou X, Xing H, et al. Intranasal delivery of miR-146a mimics delayed seizure onset in the lithium-pilocarpine mouse model. Mediators Inflamm. 2017; 2017: 6512620.


Topcu B, Gultekinoglu M, Timur SS, Eroglu I, Ulubayram K, Eroglu H. Current approaches and future prospects of nanofibers: a special focus on antimicrobial drug delivery. J Drug Target. 2021; 29: 563-75.


Wang G, Hu W, Chen H, Shou X, Ye T, Xu Y. Cocktail strategy based on NK cell-derived exosomes and their biomimetic nanoparticles for dual tumor therapy. Cancers (Basel). 2019; 11: 1560.

Publication history
Rights and permissions

Publication history

Received: 13 May 2021
Accepted: 27 July 2021
Published: 15 March 2022
Issue date: March 2022


©2022 Cancer Biology & Medicine.


This work was supported by NIH grants R01-CA201148 (K.S.) and by DoD grant LC180495.

Rights and permissions

Creative Commons Attribution-NonCommercial 4.0 International License