Journal Home > Volume 10 , Issue 4

As an important water source and ecological barrier in the Yellow River Basin, the source region of the Yellow River (above the Huangheyan Hydrologic Station) presents a remarkable permafrost degradation trend due to climate change. Therefore, scientific understanding the effects of permafrost degradation on runoff variations is of great significance for the water resource and ecological protection in the Yellow River Basin. In this paper, we studied the mechanism and extent of the effect of degrading permafrost on surface flow in the source region of the Yellow River based on the monitoring data of temperature and moisture content of permafrost in 2013–2019 and the runoff data in 1960–2019. The following results have been found. From 2013 to 2019, the geotemperature of the monitoring sections at depths of 0–2.4 m increased by 0.16°C/a on average. With an increase in the thawing depth of the permafrost, the underground water storage space also increased, and the depth of water level above the frozen layer at the monitoring points decreased from above 1.2 m to 1.2–2 m. 64.7% of the average multiyear groundwater was recharged by runoff, in which meltwater from the permafrost accounted for 10.3%. Compared to 1960-1965, the runoff depth in the surface thawing period (from May to October) and the freezing period (from November to April) decreased by 1.5 mm and 1.2 mm, respectively during 1992–1997, accounting for 4.2% and 3.4% of the average annual runoff depth, respectively. Most specifically, the decrease in the runoff depth was primarily reflected in the decreased runoff from August to December. The permafrost degradation affects the runoff within a year by changing the runoff generation, concentration characteristics and the melt water quantity from permafrost, decreasing the runoff at the later stage of the permafrost thawing. However, the permafrost degradation has limited impacts on annual runoff and does not dominate the runoff changes in the source region of the Yellow River in the longterm.


menu
Abstract
Full text
Outline
About this article

Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects

Show Author's information Liang Zhu1Ming-nan Yang1( )Jing-tao Liu1,2Yu-xi Zhang1,2Xi Chen1Bing Zhou1,3
Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Key Laboratory of Groundwater Pollution Mechanism and the Repair of Hebei Province, Shijiazhuang 050061, China
China University of Geosciences (Beijing), Beijing 100083, China

Abstract

As an important water source and ecological barrier in the Yellow River Basin, the source region of the Yellow River (above the Huangheyan Hydrologic Station) presents a remarkable permafrost degradation trend due to climate change. Therefore, scientific understanding the effects of permafrost degradation on runoff variations is of great significance for the water resource and ecological protection in the Yellow River Basin. In this paper, we studied the mechanism and extent of the effect of degrading permafrost on surface flow in the source region of the Yellow River based on the monitoring data of temperature and moisture content of permafrost in 2013–2019 and the runoff data in 1960–2019. The following results have been found. From 2013 to 2019, the geotemperature of the monitoring sections at depths of 0–2.4 m increased by 0.16°C/a on average. With an increase in the thawing depth of the permafrost, the underground water storage space also increased, and the depth of water level above the frozen layer at the monitoring points decreased from above 1.2 m to 1.2–2 m. 64.7% of the average multiyear groundwater was recharged by runoff, in which meltwater from the permafrost accounted for 10.3%. Compared to 1960-1965, the runoff depth in the surface thawing period (from May to October) and the freezing period (from November to April) decreased by 1.5 mm and 1.2 mm, respectively during 1992–1997, accounting for 4.2% and 3.4% of the average annual runoff depth, respectively. Most specifically, the decrease in the runoff depth was primarily reflected in the decreased runoff from August to December. The permafrost degradation affects the runoff within a year by changing the runoff generation, concentration characteristics and the melt water quantity from permafrost, decreasing the runoff at the later stage of the permafrost thawing. However, the permafrost degradation has limited impacts on annual runoff and does not dominate the runoff changes in the source region of the Yellow River in the longterm.

Keywords: Climate change, Runoff, Permafrost degradation, Source region of the Yellow River

References(35)

Bai YL, Wang F, Liu Y. 2021. Quantitative analysis of runoff evolution and driving factors in the upper reaches of Datong River. South-to-North Water Transfers and Water Science & Technology, 19(1): 103−110. (in Chinese)

Cao W, Sheng Y, Wu JC, et al. 2021. Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau. Cold Regions Science & Technology, 184: 103236.

Czerniawska J, Chlachula J. 2020. Climate-change induced permafrost degradation in Yakutia, East Siberia. Arctic, 73(4): 509−528.

Dai JC, Wang GX, Song CL, et al. 2018. Study on the law of runoff retreat in the Three-river headwaters rgion. Resources and Environment in the Yangtze River, 27(6): 1342-1350. (in Chinese)

Frampton A, Painter SL, Destouni G. 2013. Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeology Journal, 21(1): 271−280.

Gao ZY, Niu FJ, Lin ZJ. 2020. Effects of permafrost degradation on thermokarst lake hydrochemistry in the Qinghai-Tibet Plateau, China. Hydrological Processes, 34(26): 5659−5673.

Han SB, Li FC, Wang S, et al. 2021. Groundwater resource and eco-environmental problem of the Yellow River Basin. Geology in China, 48(4): 1001−1019. (in Chinese)

Jin HJ, He RX, Cheng GD, et al. 2009. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 4(4): 045206.

Li WZ, Liu W, Zhang TF, et al. 2018. The contribution rate of climate and human activities on runoff change in the source regions of Yellow River. Journal of Glaciology and Geocryology, 40(5): 958−992. (in Chinese)

Li ZJ, Li ZX, Song LL, et al. 2020. Characteristic and factors of stable isotope in precipitation in the source region of the Yangtze River. Agricultural and Forest Meteorology, 281: 107825.

Liu BK, Li L, Du YE, et al. 2016. Causes of the outburst of Zonag Lake in Hoh Xil, Tibetan Plateau, and its impact on surrounding environment. Journal of Glaciology and Geocryology, 38(2): 305−311. (in Chinese)

Lu ZX, Feng Q, Zou SB, et al. 2020. The heterogeneity of hydrometeorological changes during the period of 1961-2016 in the source region of the Yellow River, China. Sciences in Cold and Arid Regions, 12(2): 104−118.

Ma Q, Jin HJ, Victor F B, et al. 2019. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Advances in Climate Change Research, 10(4): 225−239.

Oliva M, Pereira P, Antoniades D. 2018. The environmental consequences of permafrost degradation in a changing climate. Science of the Total Environment, 616-617(1): 435−437.

Qiao G, Yu FD, Wang WK, et al. 2022. Thermodynamic transport mechanism of water freezing-thawing in the vadose zone in the alpine meadow of the Tibet Plateau. Journal of Groundwater Science and Engineering, 10(3): 302−310.

Shen HY, Li J, Wang ZH, et al. 2022. Water resources utilization and eco-environment problem of Fenhe River, branch of Yellow river. Geology in China, 49(4): 1127−1138. (in Chinese)

Sheng Y, Ma S, Cao W, et al. 2020. Spatiotemporal changes of permafrost in the Headwater Area of the Yellow River under a changing climate. Land Degradation & Development, 31(1): 133−152.

Song CL, Wang GX, Mao TX, et al. 2020. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Science China Earth Sciences, 63(2): 292−302.

Sun YS, Liu T, Li Y. 2021. Analysis on the consistency of precipitation and runoff in the source area of the Yellow River and its influencing factors. Yellow River, 43(10): 51−55,101. (in Chinese)

Wan CW, Gibson JJ, Shen SC, et al. 2019. Using stable isotopes paired with tritium analysis to assess thermokarst lake water balances in the source area of the Yellow River, northeastern Qinghai-Tibet Plateau, China. Science of the Total Environment, 689: 1276−1292.

Wang GX, Mao TX, Chang J, et al. 2017. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus. Journal of Hydrology, 550: 307−317.

Walvoord MA, Voss CI, Wellman TP. 2012. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 48(7): 1−17.

Wang DX, Tian SM, Jiang SQ, et al. 2020. Research progress of the evolution of runoff in the source area of the Yellow River. Yellow River, 42(9): 90−95. (in Chinese)

Wang Y, Chen RS, Xia ZL, et al. 2020. The evaluation of ecosystem service value and its spatial change in the Yellow River Basin and suggestions from the ecological geology perspectives. Geological Bulletin of China, 39(10): 1650−1662. (in Chinese)

Wu AM, Hao AB, Guo HP, et al. 2020. Main progress and prospect for China’s hydrogeological survey. Journal of Groundwater Science and Engineering, 8(3): 195−209.

Xu R, Hu HC, Tian FQ, et al. 2019. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Global & Planet Change, 175: 144−159.

Yang YZ, Wu QB, Jin HJ, et al. 2019. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China. Journal of Hydrology, 569: 359−372.

You QL, Kang SC, Li JD, et al. 2021. Several research frontiers of climate change over the Tibetan Plateau. Journal of Glaciology and Geocryology, 43(3): 885−901. (in Chinese)

Zeng L, Zhao GZ. 2022. Groundwater response of loess slope during seasonal freeze-thaw process. Geological Bulletin of China, 41(7): 1300−1307. (in Chinese)

Zhang GQ, Wang MM, Zhou T, et al. 2022. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. Journal of Remote Sensing, 26(1): 115−125. (in Chinese)

Zhang JY, Liu JF, Jin JL, et al. 2019. Evolution and trend of Water Resources in Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1264−1273. (in Chinese)

Zhang SQ, Wang YG, Zhao YZ, et al. 2004. Permafrost degradation and its environmental sequent in the source regions of the Yellow River. Journal of Glaciology and Geocryology, 26(1): 1−6. (in Chinese)

Zhang SQ, Pu ZC, Li JL, et al. 2013. Response of the maximum depth of seasonal freezing to the cumulated negative temperature. Journal of Glaciology and Geocryology, 35(6): 1419−1427. (in Chinese)

Zhu Y, Liu SY, Yi Y, et al. 2021. Spatio-temporal variations in terrestrial water storage and its controlling factors in the Eastern Qinghai-Tibet Plateau. Hydrology Research, 52(1): 323−338.

Zhu L, Liu JT, Yang MN, et al. 2021. Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration. Journal of Groundwater Science and Engineering, 9(3): 202−211.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2022
Accepted: 10 October 2022
Published: 27 December 2022
Issue date: December 2022

Copyright

© 2022 Journal of Groundwater Science and Engineering Editorial Office

Acknowledgements

Acknowledgements

This study was funded by the basic scientific research expense of the Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences (SK202214) and the Survey for Land and Resources (DD20190331). Professor Zhang Senqi and Wu Jichun provided considerable assistance in the processing of the monitoring data on permafrost geotemperature and moisture content. We would like to extend our gratitude to all of them.

Return