Journal Home > Volume 10 , Issue 2

Design and selection of advanced protection schemes have become essential for reliable and secure operation of networked microgrids. Various protection schemes that allow correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. Interconnection of these microgrids in different nodes with various interconnection technologies increases fault occurrence and complicates protection operation. This paper aims to point out challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation.


menu
Abstract
Full text
Outline
About this article

Review of Networked Microgrid Protection: Architectures, Challenges, Solutions, and Future Trends

Show Author's information Jorge de la Cruz1 ( )Ying Wu1John E. Candelo-Becerra2Juan C. Vásquez1Josep M. Guerrero3
Center for Research on Microgrids (CROM), Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark
Facultad de Minas, Departamento de Energía Electrica y Automática, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, Colombia
Center for Research on Microgrids at UPC (UPC CROM), Department of Electronic Engineering, Technical University of Catalonia (UPC), 08019 Barcelona Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; and also with Center for Research on Microgrids at AAU (AAU CROM), AAU Energy, Aalborg University (AAU), 9220 Aalborg East, Denmark

Abstract

Design and selection of advanced protection schemes have become essential for reliable and secure operation of networked microgrids. Various protection schemes that allow correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. Interconnection of these microgrids in different nodes with various interconnection technologies increases fault occurrence and complicates protection operation. This paper aims to point out challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation.

Keywords: smart grid, real-time simulation, microgrid, Adaptive protection, microgrid cluster, multiple microgrid, networked microgrid

References(160)

[1]
M. Moradi and A. Akbari Foroud, “Operation management of microgrid clusters,” in Microgrids: Advances in Operation, Control, and Protection, A. Anvari-Moghaddam, H. Abdi, B. Mohammadi-Ivatloo, and N. Hatziargyriou, Eds. Cham: Springer, 2021, pp. 17–59, doi: 10.1007/978-3-030-59750-4_2.
DOI
[2]
P. Roy Chowdhury, P. K. Sahu, S. Essakiappan, M. Manjrekar, K. Schneider, and S. Laval, “Power quality and stability in a cluster of microgrids with coordinated power and energy management,” in Proceedings of 2020 IEEE Industry Applications Society Annual Meeting, 2020, pp. 1–7, doi: 10.1109/IAS44978.2020.9334828.
DOI
[3]

S. Chanda and A. K. Srivastava, “Defining and enabling resiliency of electric distribution systems with multiple microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2859–2868, Nov. 2016, doi: 10.1109/TSG.2016.2561303.

[4]

Z. Y. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, “Networked microgrids for enhancing the power system resilience,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1289–1310, Jul. 2017, doi: 10.1109/JPROC.2017.2685558.

[5]

Z. Y. Wang, B. K. Chen, J. H. Wang, and C. Chen, “Networked microgrids for self-healing power systems,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 310–319, Jan. 2016, doi: 10.1109/TSG.2015.2427513.

[6]

D. T. Ton and M. A. Smith, “The U.S. department of energy’s microgrid initiative,” The Electricity Journal, vol. 25, no. 8, pp. 84–94, Oct. 2012, doi: 10.1016/j.tej.2012.09.013.

[7]

M. Higginson, M. Payne, K. Moses, P. Curtiss, and S. Costello, “North bay hydro microgrid: innovative protection of a complex system,” IEEE Power and Energy Magazine, vol. 19, no. 3, pp. 70–82, May/Jun. 2021, doi: 10.1109/MPE.2021.3057954.

[8]

L. X. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. N. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 928–948, Sep. 2017, doi: 10.1109/JESTPE.2017.2690219.

[9]

M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked microgrids: state-of-the-art and future perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, Mar. 2019, doi: 10.1109/TⅡ.2018.2881540.

[10]
J. Wei, R. Roche, A. Koukam, and F. Lauri, “Decentralized coordination for mutual rescue in microgrid clusters,” in Proceedings of 2018 IEEE International Energy Conference, 2018, pp. 1–6, doi: 10.1109/ENERGYCON.2018.8398769.
DOI
[11]

M. N. Alam, S. Chakrabarti, and X. D. Liang, “A benchmark test system for networked microgrids,” IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6217–6230, Oct. 2020, doi: 10.1109/TⅡ.2020.2976893.

[12]

M. A. Yaqobi, H. Matayoshi, M. S. S. Danish, M. E. Lotfy, A. M. Howlader, and S. Tomonobu, “Low-voltage solid-state DC breaker for fault protection applications in isolated DC microgrid cluster,” Applied Sciences (Switzerland), vol. 9, no. 4, Feb. 2019, doi: 10.3390/app9040723.

[13]

K. El-Arroudi and G. Joós, “Performance of interconnection protection based on distance relaying for wind power distributed generation,” IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 620–629, Apr. 2018, doi: 10.1109/TPWRD.2017.2693292.

[14]

A. Sinclair, D. Finney, D. Martin, and P. Sharma, “Distance protection in distribution systems: How it assists with integrating distributed resources,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2186–2196, May/Jun. 2014, doi: 10.1109/TIA.2013.2288426.

[15]

S. Beheshtaein, R. Cuzner, M. Savaghebi, and J. M. Guerrero, “Review on microgrids protection,” IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 743–759, Mar. 2019, doi: 10.1049/iet-gtd.2018.5212.

[16]
A. K. Barnes and A. Mate, “Implementing admittance relaying for microgrid protection,” in Proceedings of the 2021 IEEE/IAS 57th Industrial and Commercial Power Systems Technical Conference, 2021, pp. 1–9, doi: 10.1109/ICPS51807.2021.9416600.
DOI
[17]

E. Dehghanpour, H. Kazemi Karegar, R. Kheirollahi, and T. Soleymani, “Optimal coordination of directional overcurrent relays in microgrids by using cuckoo-linear optimization algorithm and fault current limiter,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1365–1375, Mar. 2018, doi: 10.1109/TSG.2016.2587725.

[18]

P. Thararak and P. Jirapong, “Implementation of optimal protection coordination for microgrids with distributed generations using quaternary protection scheme,” Journal of Electrical and Computer Engineering, vol. 2020, pp. 2568652, Jan. 2020, doi: 10.1155/2020/2568652.

[19]
M. Singh and P. Basak, “Conceptualization of adaptive relaying in protection of hybrid microgrid through analysis of open and short circuit faults based on q0 components of fault current,” in Proceedings of the 15th International Conference on Developments in Power System Protection, 2020, doi: 10.1049/cp.2020.0102.
DOI
[20]

S. Chakraborty and S. Das, “Communication-less protection scheme for AC microgrids using hybrid tripping characteristic,” Electric Power Systems Research, vol. 187, pp. 106453, Oct. 2020, doi: 10.1016/j.epsr.2020.106453.

[21]

A. Hooshyar and R. Iravani, “A new directional element for microgrid protection,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6862–6876, Nov. 2018, doi: 10.1109/TSG.2017.2727400.

[22]

M. Monadi, M. A. Zamani, C. Koch-Ciobotaru, J. I. Candela, and P. Rodriguez, “A communication-assisted protection scheme for direct-current distribution networks,” Energy, vol. 109, pp. 578–591, Aug. 2016, doi: 10.1016/j.energy.2016.04.118.

[23]

E. Sortomme, S. S. Venkata, and J. Mitra, “Microgrid protection using communication-assisted digital relays,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2789–2796, Oct. 2010, doi: 10.1109/TPWRD.2009.2035810.

[24]
M. E. Elkhatib and A. Ellis, “Communication-assisted impedance-based microgrid protection scheme,” in Proceedings of 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1–5, doi: 10.1109/PESGM.2017.8274206.
DOI
[25]

H. F. Habib, T. Youssef, M. H. Cintuglu, and O. A. Mohammed, “Multi-agent-based technique for fault location, isolation, and service restoration,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1841–1851, May-Jun. 2017, doi: 10.1109/TIA.2017.2671427.

[26]

H. W. Lin, K. Sun, Z. H. Tan, C. X. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 770–779, Mar. 2019, doi: 10.1049/iet-gtd.2018.6230.

[27]

N. Hussain, Y. Khayat, S. Golestan, M. Nasir, J. C. Vasquez, J. M. Guerrero, and K. Kauhaniemi, “AC microgrids protection: a digital coordinated adaptive scheme,” Applied Sciences (Switzerland), vol. 11, no. 15, pp. 7066, Jul. 2021, doi: 10.3390/app11157066.

[28]

P. Chauhan, C. P. Gupta, and M. Tripathy, “A novel adaptive protection technique based on rate-of-rise of fault current in DC microgrid,” Electric Power Systems Research, vol. 207, pp. 107832, Jun. 2022, doi: 10.1016/j.epsr.2022.107832.

[29]

M. P. Reddy and M. Manimozhi, “A review on microgrid protection using Superconducting Fault Current Limiter,” Journal of Green Engineering, vol. 8, no. 2, pp. 89–124, Jul. 2018, doi: 10.13052/jge1904-4720.821.

[30]

M. G. M. Zanjani, K. Mazlumi, and I. Kamwa, “Application of μPMUs for adaptive protection of overcurrent relays in microgrids,” IET Generation, Transmission & Distribution, vol. 12, no. 18. pp. 4061–4069, Oct. 2018, doi: 10.1049/iet-gtd.2018.5898.

[31]

F. Bandeiras, E. Pinheiro, M. Gomes, P. Coelho, and J. Fernandes, “Review of the cooperation and operation of microgrid clusters,” Renewable and Sustainable Energy Reviews, vol. 133. pp. 110311, Nov. 2020, doi: 10.1016/j.rser.2020.110311.

[32]

W. E. P. Sampath Ediriweera and N. W. A. Lidula, “Design and protection of microgrid clusters: a comprehensive review,” AIMS Energy, vol. 10, no. 3, pp. 375–411, May 2022, doi: 10.3934/energy.2022020.

[33]

F. Zhang and L. H. Mu, “New protection scheme for internal fault of multi-microgrid,” Protection and Control of Modern Power Systems, vol. 4, no. 1, pp. 14, Jun. 2019, doi: 10.1186/s41601-019-0127-3.

[34]

N. Bayati, H. R. Baghaee, A. Hajizadeh, M. Soltani, and Z. Y. Lin, “Mathematical morphology-based local fault detection in DC Microgrid clusters,” Electric Power Systems Research, vol. 192, pp. 106981, Mar. 2021, doi: 10.1016/j.epsr.2020.106981.

[35]

M. M. Eissa and M. H. A. Awadalla, “Centralized protection scheme for smart grid integrated with multiple renewable resources using Internet of Energy,” Global Transitions, vol. 1, pp. 50–60, Jan. 2019, doi: 10.1016/j.glt.2019.01.002.

[36]

A. C. Adewole, A. D. Rajapakse, D. Ouellette, and P. Forsyth, “Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources,” Electric Power Systems Research, vol. 202, Jan. pp. 107575, Jan. 2022, doi: 10.1016/j.epsr.2021.107575.

[37]
S. Gopalan, V. Sreeram, Y. Mishra, and H. Iu, “Protection issues in microgrids and multi-microgrids,” in Handbook of Distributed Generation: Electric Power Technologies, Economics and Environmental Impacts, R. Bansal, Ed. Cham: Springer, 2017, pp. 503–547, doi: 10.1007/978-3-319-51343-0_16.
DOI
[38]

A. M. Tsimtsios and V. C. Nikolaidis, “Towards plug-and-play protection for meshed distribution systems with DG,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 1980–1995, May 2020, doi: 10.1109/TSG.2019.2945694.

[39]

M. Ojaghi and V. Mohammadi, “Use of clustering to reduce the number of different setting groups for adaptive coordination of overcurrent relays,” IEEE Transactions on Power Delivery, vol. 33, no. 3. pp. 1204–1212, Jun. 2018, doi: 10.1109/TPWRD.2017.2749321.

[40]

M. N. Alam, R. Gokaraju, and S. Chakrabarti, “Protection coordination for networked microgrids using single and dual setting overcurrent relays,” IET Generation, Transmission & Distribution, vol. 14, no. 14, pp. 2818–2828, Jul. 2020, doi: 10.1049/iet-gtd.2019.0557.

[41]
S. Hossain-McKenzie, M. J. Reno, J. P. Eddy, and K. P. Schneider, “Assessment of existing capabilities and future needs for designing networked microgrids,” Sandia National Laboratories, SAND-2019–2436, 2019.
DOI
[42]
N. J. Gil and J. A. P. Lopes, “Hierarchical frequency control scheme for islanded multi-microgrids operation,” in Proceedings of 2007 IEEE Lausanne Power Tech, 2007, pp. 473–478, doi: 10.1109/PCT.2007.4538363.
DOI
[43]
S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: a review,” IEEE Access, to be published, doi: 10.1109/ACCESS.2015.2443119.
DOI
[44]

S. A. Gopalan, V. Sreeram, and H. H. C. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 222–228, Apr. 2014, doi: 10.1016/j.rser.2014.01.037.

[45]
E. Trinklei, G. Parker, W. Weaver, R. Robinett, L. B. Gauchia, C. W. Ten, W. Bower, S. F. Glover, and S. Bukowski, “Scoping study: networked microgrids,” Sandia National Laboratories, Albuquerque, SAND-2014–17718, 2014, doi: 10.2172/1433071.
DOI
[46]

B. Chen, J. H. Wang, X. N. Lu, C. Chen, and S. J. Zhao, “Networked microgrids for grid resilience, robustness, and efficiency: a review,” IEEE Transactions on Smart Grid, vol. 12, no. 1. pp. 18–32, Jan. 2021, doi: 10.1109/TSG.2020.3010570.

[47]

A. Alabdulwahab and M. Shahidehpour, “Microgrid networking for the monitoring, control and protection of modern power systems,” The Electricity Journal, vol. 29, no. 10, pp. 1–7, Dec. 2016, doi: 10.1016/j.tej.2016.11.012.

[48]

J. H. Wang and X. N. Lu, “Sustainable and resilient distribution systems with networked microgrids[point of view],” Proceedings of the IEEE, vol. 108, no. 2, pp. 238–241, Feb. 2020, doi: 10.1109/JPROC.2019.2963605.

[49]
G. D. Liu, M. R. Starke, B. Ollis, and Y. S. Xue, “Networked microgrids scoping study,” Oak Ridge National Laboratory, Oak Ridge, ORNL/TM-2016/294, 2016.
[50]

Z. R. Xu, P. Yang, C. L. Zheng, Y. J. Zhang, J. J. Peng, and Z. J. Zeng, “Analysis on the organization and development of multi-microgrids,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2204–2216, Jan. 2018, doi: 10.1016/j.rser.2017.06.032.

[51]

E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures,” Applied Energy, vol. 212, pp. 340–361, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.048.

[52]

M. Islam, F. W. Yang, and M. Amin, “Control and optimisation of networked microgrids: a review,” IET Renewable Power Generation, vol. 15, no. 6, pp. 1133–1148, Apr. 2021, doi: 10.1049/rpg2.12111.

[53]
X. P. Zhou, A. Luo, Y. D. Chen, L. M. Zhou, W. H. Wu, L. Yang, H. Q. Yu, Z. W. Xie, W. J. Tan, and J. S. Jiang, “A microgrid cluster structure and its autonomous coordination control strategy,” in Proceedings of the IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 2332–2337, doi: 10.1109/IECON.2017.8216393.
DOI
[54]

P. Wu, W. T. Huang, N. L. Tai, and S. Liang, “A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection,” Applied Energy, vol. 210, pp. 1002–1016, Jan. 2018, doi: 10.1016/j.apenergy.2017.07.023.

[55]

L. Ortiz, R. Orizondo, A. Águila, J. W. González, G. J. López, and I. Isaac, “Hybrid AC/DC microgrid test system simulation: grid-connected mode,” Heliyon, vol. 5, no. 12, pp. E02862, Dec. 2019, doi: 10.1016/j.heliyon.2019.e02862.

[56]
S. Jena and N. P. Padhy, “Distributed cooperative control for autonomous hybrid AC/DC microgrid clusters interconnected via back-to-back converter control,” in Proceedings of 2020 IEEE Power & Energy Society General Meeting, 2020, pp. 1–5, doi: 10.1109/PESGM41954.2020.9281505.
DOI
[57]
M. Cintuglu, A. Kondabathini, and D. Ishchenko, “Real-time implementation of secure distributed state estimation for networked microgrids,” in Proceedings of the 2020 IEEE 6th World Forum on Internet of Things, 2020, pp. 1–6, doi: 10.1109/WF-IoT48130.2020.9221310.
DOI
[58]

Y. Wang, T. L. Nguyen, Y. Xu, Q. T. Tran, and R. Caire, “Peer-to-peer control for networked microgrids: multi-layer and multi-agent architecture design,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4688–4699, Nov. 2020, doi: 10.1109/TSG.2020.3006883.

[59]

D. G. Rosero, N. L. Díaz, and C. L. Trujillo, “Cloud and machine learning experiments applied to the energy management in a microgrid cluster,” Applied Energy, vol. 304, pp. 117770, Dec. 2021, doi: 10.1016/j.apenergy.2021.117770.

[60]

H. Yu, S. Y. Niu, Z. Y. Shao, and L. M. Jian, “A scalable and reconfigurable hybrid AC/DC microgrid clustering architecture with decentralized control for coordinated operation,” International Journal of Electrical Power & Energy Systems, vol. 135, pp. 107476, Feb. 2022, doi: 10.1016/j.ijepes.2021.107476.

[61]
P. S. Prasad and A. M. Parimi, “Recent advancements in hybrid AC/DC microgrids,” in Microgrids, J. M. Guerrero and R. Kandari, Eds. Amsterdam: Elsevier, 2022, pp. 227–246, doi: 10.1016/B978-0-323-85463-4.00004-6.
DOI
[62]

S. Sarangi, B. K. Sahu, and P. K. Rout, “Review of distributed generator integrated AC microgrid protection: issues, strategies, and future trends,” International Journal of Energy Research, vol. 45, no. 10. pp. 14117–14144, Aug. 2021, doi: 10.1002/er.6689.

[63]
S. A. Gopalan, V. Sreeram, H. H. C. Iu, Z. Xu, Z. Y. Dong, and K. P. Wong, “Fault analysis of an islanded multi-microgrid,” in Proceedings of 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1–6, doi: 10.1109/PESGM.2012.6344872.
DOI
[64]

M. Sun and M. M. Ma, “The interconnection protection of the MV multiple microgrid,” Advanced Materials Research, vol. 860–863, pp. 1919–1924, Dec. 2013, doi: 10.4028/www.scientific.net/AMR.860-863.1919.

[65]
H. Nagarajan, M. J. Reno, and S. Kundu, (2020). Preliminary design process for networked microgrids optimal topology design for power system stability view project.[Online]. Available: https://www.ntis.gov/about
[66]
C. Cavalieri, V. Farias, and M. Kabalan, “Microgrid protection: a case study of a real-world industry-grade microgrid,” in Proceedings of 2021 IEEE Kansas Power and Energy Conference, 2021, pp. 1–5, doi: 10.1109/KPEC51835.2021.9446263.
DOI
[67]

L. Hallemans, S. Ravyts, G. Govaerts, S. Fekriasl, P. van Tichelen, and J. Driesen, “A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids,” Applied Energy, vol. 310, pp. 118420, Mar. 2022, doi: 10.1016/j.apenergy.2021.118420.

[68]

D. K. J. S. Jayamaha, N. W. A. Lidula, and A. D. Rajapakse, “Protection and grounding methods in DC microgrids: comprehensive review and analysis,” Renewable and Sustainable Energy Reviews, vol. 120, pp. 109631, Mar. 2020, doi: 10.1016/j.rser.2019.109631.

[69]
D. H. Zheng, W. Zhang, S. N. Alemu, P. Wang, G. T. Bitew, D. Wei, and J. Yue, “Protection of microgrids,” in Microgrid Protection and Control, D. H. Zheng, S. N. Alemu, G. T. Bitew, J. Yue, W. Zhang, P. Wang, and D. Wei, Eds. Amsterdam: Elsevier, 2021, pp. 121–168, doi: 10.1016/B978-0-12-821189-2.00006-1.
DOI
[70]

M. N. Alam, S. Chakrabarti, and A. K. Pradhan, “Protection of networked microgrids using relays with multiple setting groups,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3713–3723, Jun. 2022, doi: 10.1109/tii.2021.3120151.

[71]

S. Mirsaeidi, X. Z. Dong, S. X. Shi, and D. Tzelepis, “Challenges, advances and future directions in protection of hybrid AC/DC microgrids,” IET Renewable Power Generation, vol. 11, no. 12. pp. 1495–1502, Oct. 2017, doi: 10.1049/iet-rpg.2017.0079.

[72]

G. Kaur, A. Prakash, and K. U. Rao, “A critical review of Microgrid adaptive protection techniques with distributed generation,” Renewable Energy Focus, vol. 39. pp. 99–109, Dec. 2021, doi: 10.1016/j.ref.2021.07.005.

[73]
T. Patel, S. Brahma, J. Hernandez-Alvidrez, and M. J. Reno, “Adaptive protection scheme for a real-world microgrid with 100% inverter-based resources,” in Proceedings of 2020 IEEE Kansas Power and Energy Conference, 2020, 1–6.
DOI
[74]

M. E. Ropp and M. J. Reno, “Influence of inverter-based resources on microgrid protection: part 2: secondary networks and microgrid protection,” IEEE Power and Energy Magazine, vol. 19, no. 3, pp. 47–57, May/Jun. 2021, doi: 10.1109/MPE.2021.3057952.

[75]

B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “AC microgrid protection – a review: current and future prospective,” Applied Energy, vol. 271, pp. 115210, Aug. 2020, doi: 10.1016/j.apenergy.2020.115210.

[76]

A. Dagar, P. Gupta, and V. Niranjan, “Microgrid protection: a comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 149, pp. 111401, Oct. 2021, doi: 10.1016/j.rser.2021.111401.

[77]
S. G. Srivani, C. Suresha, K. N. S. V. Theertha, and D. Chandan, “Adaptive protection scheme for renewable integrated microgrid–-a case study,” in Proceedings of the International Conference on Information and Communication Technology for Intelligent Systems, 2021, pp. 545–554, doi: 10.1007/978-981-15-7078-0_53.
DOI
[78]

H. Bawayan and M. Younis, “Microgrid protection through adaptive overcurrent relay coordination,” Electricity, vol. 2, no. 4, pp. 524–553, Nov. 2021, doi: 10.3390/electricity2040031.

[79]

P. Pan and R. K. Mandal, “Learning approach based DC arc fault location classification in DC microgrids,” Electric Power Systems Research, vol. 208, pp. 107874, Jul. 2022, doi: 10.1016/j.epsr.2022.107874.

[80]

S. Jadidi, H. Badihi, and Y. M. Zhang, “Fault diagnosis in microgrids with integration of solar photovoltaic systems: a review,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 12091–12096, Jan. 2020, doi: 10.1016/j.ifacol.2020.12.763.

[81]

C. Srivastava and M. Tripathy, “DC microgrid protection issues and schemes: a critical review,” Renewable and Sustainable Energy Reviews, vol. 151, pp. 111546, Nov. 2021, doi: 10.1016/j.rser.2021.111546.

[82]
S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC microgrid protection: a comprehensive review,” IEEE Journal of Emerging and Selected Topics in Power Electronics, to be published, doi: 10.1109/jestpe.2019.2904588.
DOI
[83]

N. Bayati, A. Hajizadeh, and M. Soltani, “Protection in DC microgrids: a comparative review,” IET Smart Grid, vol. 1, no. 3, pp. 66–75, Oct. 2018, doi: 10.1049/iet-stg.2018.0035.

[84]

N. Bayati, E. Balouji, H. R. Baghaee, A. Hajizadeh, M. Soltani, Z. Y. Lin, and M. Savaghebi, “Locating high-impedance faults in DC microgrid clusters using support vector machines,” Applied Energy, vol. 308, pp. 118338, Feb. 2022, doi: 10.1016/j.apenergy.2021.118338.

[85]

N. Bayati, H. R. Baghaee, A. Hajizadeh, M. Soltani, Z. Y. Lin, and M. Savaghebi, “Local fault location in meshed DC microgrids based on parameter estimation technique,” IEEE Systems Journal, vol. 16, no. 1, pp. 1606–1615, Mar. 2022, doi: 10.1109/JSYST.2021.3107905.

[86]
R. Mohanty and A. K. Pradhan, “Protection of DC and hybrid AC-DC microgrids with ring configuration,” in Proceedings of the 2017 7th International Conference on Power Systems, 2017, pp. 607–612, doi: 10.1109/ICPES.2017.8387365.
DOI
[87]
M. Vrtal, P. Toman, and J. Moravek, “Control and protection of AC/DC hybrid microgrids,” in Proceedings of the CIRED 2021 - the 26th International Conference and Exhibition on Electricity Distribution, 2021, pp. 1510–1514, doi: 10.1049/icp.2021.1643.
DOI
[88]

S. Sarangi, B. K. Sahu, and P. K. Rout, “Distributed generation hybrid AC/DC microgrid protection: a critical review on issues, strategies, and future directions,” International Journal of Energy Research, vol. 44, no. 5, pp. 3347–3364, Apr. 2020, doi: 10.1002/er.5128.

[89]

E. Planas, J. Andreu, J. I. Gárate, I. Martínez de Alegría, and E. Ibarra, “AC and DC technology in microgrids: a review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 726–749, Mar. 2015, doi: 10.1016/j.rser.2014.11.067.

[90]

M. J. Reno, S. Brahma, A. Bidram, and M. E. Ropp, “Influence of inverter-based resources on microgrid protection: part 1: microgrids in radial distribution systems,” IEEE Power and Energy Magazine, vol. 19, no. 3, pp. 36–46, May/Jun. 2021, doi: 10.1109/MPE.2021.3057951.

[91]
E. C. Piesciorovsky and B. Ollis, “Oak ridge national laboratory literature review: methods for microgrid protection,” ORNL/TM-2019/1085, 2019.
[92]

A. Chandra, G. K. Singh, and V. Pant, “Protection of AC microgrid integrated with renewable energy sources – A research review and future trends,” Electric Power Systems Research, vol. 193, pp. 107036, Apr. 2021, doi: 10.1016/j.epsr.2021.107036.

[93]

P. H. Gadde and S. M. Brahma, “Topology-agnostic, scalable, self-healing, and cost-aware protection of microgrids,” IEEE Transactions on Power Delivery, vol. 37, no. 4, pp. 3391–3400, Aug. 2022, doi: 10.1109/tpwrd.2021.3128880.

[94]

E. Gómez-Luna, J. E. Candelo, E. Marlés, J. M. Guardiola, and J. de la Cruz, “Impact of adaptive protections in electric microgrids, challenges and future trends,” Journal of Engineering Science and Technology Review, vol. 12, no. 6, pp. 60–69, Dec. 2019, doi: 10.25103/jestr.126.08.

[95]

M. W. Altaf, M. T. Arif, S. N. Islam, and E. Haque, “Microgrid protection challenges and mitigation approaches- a comprehensive review,” IEEE Access, vol. 10, pp. 38895–38922, Apr. 2022, doi: 10.1109/ACCESS.2022.3165011.

[96]
G. Kaur, B. Moulik, and K. U. Rao, “Determining the optimum TMS and PS of overcurrent relays using the Firefly Algorithm for solving the relay coordination problem,” in Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication, 2021, pp. 1011–1015, doi: 10.1109/ICCMC51019.2021.9418021.
DOI
[97]
N. El Naily, S. M. Saad, T. Hussein, K. El-Arroudi, and F. A. Mohamed, “On-line adaptive protection scheme to overcome operational variability of DG in smart grid via fuzzy logic and genetic algorithm,” in Proceedings of the 2018 9th International Renewable Energy Congress, 2018, pp. 1–6, doi: 10.1109/IREC.2018.8362498.
DOI
[98]

B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 988–997, Jan. 2017, doi: 10.1016/j.rser.2016.09.047.

[99]
S. Faazila Fathima and L. Premalatha, “Protection strategies for AC and DC microgrid – a review of protection methods adopted in recent decade,” IETE Journal of Research, to be published, doi: 10.1080/03772063.2021.1990140.
DOI
[100]

A. Y. Hatata, M. A. Essa, and B. E. Sedhom, “Adaptive protection scheme for FREEDM microgrid based on convolutional neural network and gorilla troops optimization technique,” IEEE Access, vol. 10, pp. 55583–55601, May 2022, doi: 10.1109/ACCESS.2022.3177544.

[101]
B. Poudel, D. R. Garcia, A. Bidram, M. J. Reno, and A. Summers, “Circuit topology estimation in an adaptive protection system,” in Proceedings of the 2020 52nd North American Power Symposium, 2021, pp. 1–6, doi: 10.1109/NAPS50074.2021.9449636.
DOI
[102]
O. V. G. Swathika and K. T. M. U. Hemapala, “IOT-based adaptive protection of microgrid,” in Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications, L. Ashok Kumar, L. S. Jayashree, and R. Manimegalai, Eds. Cham: Springer, 2020, pp. 123–130, doi: 10.1007/978-3-030-24051-6_12.
DOI
[103]

S. A. Hosseini, S. H. H. Sadeghi, and A. Nasiri, “Decentralized adaptive protection coordination based on agents social activities for microgrids with topological and operational uncertainties,” IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 702–713, Jan./Feb. 2021, doi: 10.1109/TIA.2020.3028351.

[104]

A. M. Nakhaee, S. A. Hosseini, S. H. H. Sadeghi, and A. Nasiri, “A framework for assessing the impact of operational uncertainties on the reliability of adaptive microgrid protection schemes,” Arabian Journal for Science and Engineering, vol. 48, no.5, pp. 6293–6306, May 2023, doi: 10.1007/s13369-022-07347-7.

[105]
A. Zangeneh and M. Moradzadeh, “Self-healing: Definition, requirements, challenges and methods,” in Microgrid Architectures, Control and Protection Methods, N. M. Tabatabaei, E. Kabalci, and N. Bizon, Eds. Cham: Springer, 2020, pp. 509–525, doi: 10.1007/978-3-030-23723-3_21.
DOI
[106]

F. Zhang, L. H. Mu, and W. M. Guo, “An integrated wide-area protection scheme for active distribution networks based on fault components principle,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 392–402, Jan. 2019, doi: 10.1109/TSG.2017.2741060.

[107]
T. S. Ustun, R. H. Khan, A. Hadbah, and A. Kalam, “An adaptive microgrid protection scheme based on a wide-area smart grid communications network,” in Proceedings of 2013 IEEE Latin-America Conference on Communications, 2013, pp. 1–5, doi: 10.1109/LatinCom.2013.6759822.
DOI
[108]

E. Harmon, U. Ozgur, M. H. Cintuglu, R. de Azevedo, K. Akkaya, and O. A. Mohammed, “The internet of microgrids: a cloud-based framework for wide area networked microgrids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 3, pp. 1262–1274, Mar. 2018, doi: 10.1109/TⅡ.2017.2785317.

[109]
A. J. Aghbolaghi, N. M. Tabatabaei, M. K. Azad, M. Tarantash, and N. S. Boushehri, “Microgrid planning and modeling,” in Microgrid Architectures, Control and Protection Methods, N. M. Tabatabaei, E. Kabalci, and N. Bizon, Eds. Cham: Springer, 2020, pp. 21–46, doi: 10.1007/978-3-030-23723-3_2.
DOI
[110]
A. C. Enríquez, Y. G. Cardoso, and J. T. Martínez, “Microgrid protection,” in Microgrids: Advances in Operation, Control, and Protection, A. Anvari-Moghaddam, H. Abdi, B. Mohammadi-Ivatloo, and N. Hatziargyriou, Eds. Cham: Springer, 2021, pp. 437–487, doi: 10.1007/978-3-030-59750-4_17.
DOI
[111]
V. A. Papaspiliotopoulos, G. N. Korres, and N. D. Hatziargyriou, “Protection coordination in modern distribution grids integrating optimization techniques with adaptive relay setting,” in Proceedings of 2015 IEEE Eindhoven PowerTech, 2015, pp. 1–6, doi: 10.1109/PTC.2015.7232558.
DOI
[112]

M. A. Dawoud, D. K. Ibrahim, M. I. Gilany, and A. El’Gharably, “Robust coordination scheme for microgrids protection based on the rate of change of voltage,” IEEE Access, vol. 9, pp. 156283–156296, Nov. 2021, doi: 10.1109/ACCESS.2021.3128999.

[113]

H. Safari Fesagandis, M. Jalali, K. Zare, and M. Abapour, “Decentralized strategy for real-time outages management and scheduling of networked microgrids,” International Journal of Electrical Power & Energy Systems, vol. 133, pp. 107271, Dec. 2021, doi: 10.1016/j.ijepes.2021.107271.

[114]

P. Naveen and P. Jena, “A robust protection scheme for multimicrogrids using fault current limiter,” IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 5763–5775, Sep./Oct. 2022, doi: 10.1109/TIA.2022.3178687.

[115]

A. Abdali, R. Noroozian, and K. Mazlumi, “Simultaneous control and protection schemes for DC multi microgrids systems,” International Journal of Electrical Power & Energy Systems, vol. 104, pp. 230–245, Jan. 2019, doi: 10.1016/j.ijepes.2018.06.054.

[116]
T. Patel, P. Gadde, S. Brahma, J. Hernandez-Alvidrez, and M. J. Reno, “Real-time microgrid test bed for protection and resiliency studies,” in Proceedings of the 2020 52nd North American Power Symposium, 2021, pp. 1–6, doi: 10.1109/NAPS50074.2021.9449730.
DOI
[117]

A. A. Memon and K. Kauhaniemi, “Real-time hardware-in-the-loop testing of IEC 61850 GOOSE-based logically selective adaptive protection of AC microgrid,” IEEE Access, vol. 9, pp. 154612–154639, Nov. 2021, doi: 10.1109/ACCESS.2021.3128370.

[118]

P. H. A. Barra, V. A. Lacerda, R. A. S. Fernandes, and D. V. Coury, “A hardware-in-the-loop testbed for microgrid protection considering non-standard curves,” Electric Power Systems Research, vol. 196, pp. 107242, Jul. 2021, doi: 10.1016/j.epsr.2021.107242.

[119]
S. Paladhi, Q. Hong, and C. D. Booth, “Adaptive distance protection for multi-terminal lines connecting converter-interfaced renewable energy sources,” in Proceedings of the 16th International Conference on Developments in Power System Protection, 2022, pp. 31–35, doi: 10.1049/icp.2022.0907.
DOI
[120]

M. Manohar, E. Koley, and S. Ghosh, “Microgrid protection against high impedance faults with robustness to harmonic intrusion and weather intermittency,” IET Renewable Power Generation, vol. 15, no. 11, pp. 2325–2339, Aug. 2021, doi: 10.1049/rpg2.12167.

[121]

O. M. Machidon, C. Stanca, P. Ogrutan, C. Gerigan, and L. Aciu, “Power-system protection device with IoT-based support for integration in smart environments,” PLoS One, vol. 13, no. 12, pp. e0208168, Dec. 2018, doi: 10.1371/journal.pone.0208168.

[122]

P. Kumar, V. Kumar, and R. Pratap, “RT-HIL verification of FPGA-based communication-assisted adaptive relay for microgrid protection,” Electrical Engineering, vol. 104, no. 3, pp. 1277–1287, Jun. 2022, doi: 10.1007/s00202-021-01387-2.

[123]
S. Gopalan, V. Sreeram, H. Iu, and Y. Mishra, “A flexible protection scheme for an islanded Multi-Microgrid,” in Proceedings of IEEE PES ISGT Europe 2013, 2013, pp. 1–5, doi: 10.1109/ISGTEurope.2013.6695358.
DOI
[124]
M. W. Altaf, M. T. Arif, S. Saha, S. N. Islam, M. E. Haque, and A. M. T. Oo, “Effective protection scheme for reliable operation of multi-microgrid,” in Proceedings of 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems, 2020, pp. 1–6, doi: 10.1109/PEDES49360.2020.9379723.
DOI
[125]

M. Ahmadipour, M. M. Othman, R. Bo, Z. Salam, H. M. Ridha, and K. Hasan, “A novel microgrid fault detection and classification method using maximal overlap discrete wavelet packet transform and an augmented Lagrangian particle swarm optimization-support vector machine,” Energy Reports, vol. 8, pp. 4854–4870, Nov. 2022, doi: 10.1016/j.egyr.2022.03.174.

[126]
A. Ananth, P. Mohan Babu, and C. Vaithilingam, “Estimation of dynamic fault currents of microgrids using generalized regression neural network,” in Advances in Computational Intelligence and Communication Technology, X. Z. Gao, S. Tiwari, M. C. Trivedi, P. K. Singh, and K. K. Mishra, Eds. Singapore: Springer, 2022, pp. 139–146, doi: 10.1007/978-981-16-9756-2_13.
DOI
[127]
M. N. Alam, A. Sallem, and N. Masmoudi, “Protection coordination using mixed characteristics of directional overcurrent relays in interconnected power distribution networks,” in Proceedings of 2020 6th IEEE International Energy Conference, 2020, pp. 761–766, doi: 10.1109/ENERGYCon48941.2020.9236488.
DOI
[128]

R. Tiwari, R. K. Singh, and N. K. Choudhary, “Coordination of dual setting overcurrent relays in microgrid with optimally determined relay characteristics for dual operating modes,” Protection and Control of Modern Power Systems, vol. 7, no. 1, pp. 6, Dec. 2022, doi: 10.1186/s41601-022-00226-1.

[129]

M. Monadi, C. Gavriluta, A. Luna, J. I. Candela, and P. Rodriguez, “Centralized protection strategy for medium voltage DC microgrids,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 430–440, Feb. 2017, doi: 10.1109/TPWRD.2016.2600278.

[130]

K. Anjaiah, P. K. Dash, and M. Sahani, “A new protection scheme for PV-wind based DC-ring microgrid by using modified multifractal detrended fluctuation analysis,” Protection and Control of Modern Power Systems, vol. 7, no. 1, pp. 8, Mar. 2022, doi: 10.1186/s41601-022-00232-3.

[131]
D. K. J. S. Jayamaha, K. K. M. Siu, C. N. M. Ho, and A. D. Rajapakse, “Design and development of modular hybrid DC breaker scheme for DC distribution systems,” in Proceedings of 2021 IEEE Energy Conversion Congress and Exposition, 2021, pp. 5920–5926, doi: 10.1109/ecce47101.2021.9595192.
DOI
[132]

S. Nandakumar, I. Venkata Raghavendra, C. N. Muhammed Ajmal, S. N. Banavath, and K. Rajashekara, “A modular bidirectional solid-state DC circuit breaker for LV and MVDC grid applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 7760–7771, Dec. 2022, doi: 10.1109/jestpe.2022.3177248.

[133]

M. Singh, “A q component-based adaptive protection coordination optimisation using overcurrent relays in coordination with fuses for hybrid microgrid,” IET Generation, Transmission & Distribution, vol. 15, no. 14, pp. 2061–2074, Jul. 2021, doi: 10.1049/gtd2.12156.

[134]
Y. Liu, Y. L. Gu, D. Yang, and J. M. Wang, “RETRACTED ARTICLE: fault identification and relay protection of hybrid microgrid using blockchain and machine learning,” to be published, doi: 10.1080/03772063.2022.2050307.
DOI
[135]

A. G. Rameshrao, E. Koley, and S. Ghosh, “An optimal sensor location based protection scheme for DER-integrated hybrid AC/DC microgrid with reduced communication delay,” Sustainable Energy, Grids and Networks, vol. 30, pp. 100680, Jun. 2022, doi: 10.1016/j.segan.2022.100680.

[136]

W. Bower and T. Key, “Status of microgrid protection and related standards and codes: protection supports integration,” IEEE Power and Energy Magazine, vol. 19, no. 3, pp. 83–92, May/Jun. 2021, doi: 10.1109/MPE.2021.3057975.

[137]
Microgrids - Part 3–1: Technical Requirements - Protection and Dynamic Control, IEC TS 62898-3-1: 2020, 2020.
[138]
Draft Guide for the Design of Microgrid Protection Systems, IEEE-P2030.12/D1.4, 2022.
[139]
B. Kasztenny, J. Whatley, E. A. Urden, J. Burger, D. Finney, and M. Adamiak, “JEC 61850 - a practical application primer for protection engineers,” in Proceedings of 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006, pp. 18–50.
DOI
[140]
K. P. Brand, C. Brunner, and I. de Mesmaeker, “How to use IEC 61850 in protection and automation,” 2005.
[141]
J. Bruinenberg et al., “CEN-CENELEC-ETSI smart grid coordination group smart grid reference architecture,” 2012.
[142]
J. Ekanayake, “Protection of microgrids,” in Microgrids and Local Energy Systems, N. Jenkins, Ed. IntechOpen, 2021, doi: 10.5772/intechopen.99149.
DOI
[143]
IEEE Standard for the Testing of Microgrid Controllers, 2030.8-2018, 2018.
[144]

N. Hussain, M. Nasir, J. C. Vasquez, and J. M. Guerrero, “Recent developments and challenges on AC microgrids fault detection and protection systems-a review,” Energies, vol. 13, no. 9. pp. 2149, May 2020, doi: 10.3390/en13092149.

[145]
A. Mohamed, S. R. B. Vanteddu, and O. Mohammed, “Protection of bi-directional AC-DC/DC-AC converter in hybrid AC/DC microgrids,” in Proceedings of 2012 Proceedings of IEEE Southeastcon, 2012, doi: 10.1109/SECon.2012.6196958.
DOI
[146]

S. P. Rosado and S. K. Khadem, “Development of community grid: review of technical issues and challenges,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1171–1179, Mar.-Apr. 2019, doi: 10.1109/TIA.2018.2883010.

[147]

I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: a practical survey,” IEEE Access, vol. 8, pp. 47694–47712, Mar. 2020, doi: 10.1109/ACCESS.2020.2977928.

[148]
A. Srivastava, R. Mohanty, M. A. F. Ghazvini, L. A. Tuan, D. Steen, and O. Carlson, “A review on challenges and solutions in microgrid protection,” in Proceedings of 2021 IEEE Madrid PowerTech, 2021, pp. 1–6, doi: 10.1109/PowerTech46648.2021.9495090.
DOI
[149]

V. Almonacid and L. Franck, “Extending the coverage of the internet of things with low-cost nanosatellite networks,” Acta Astronaut, vol. 138, pp. 95–101, Sep. 2017, doi: 10.1016/j.actaastro.2017.05.030.

[150]
S. Paul, N. Maity, S. Sinha, S. Basu, S. Mondal, and R. Porel, “A comprehensive review of the available microgrid protection schemes and their challenges,” in Applications of Artificial Intelligence in Engineering, X. Z. Gao, R. Kumar, S. Srivastava, and B. P. Soni, Eds. Singapore: Springer, 2021, pp. 573–596, doi: 10.1007/978-981-33-4604-8_45.
DOI
[151]

H. E. Keshta, A. A. Ali, E. M. Saied, and F. M. Bendary, “Real-time operation of multi-micro-grids using a multi-agent system,” Energy, vol. 174, pp. 576–590, May 2019, doi: 10.1016/j.energy.2019.02.145.

[152]

H. Khalid and A. Shobole, “Existing developments in adaptive smart grid protection: a review,” Electric Power Systems Research, vol. 191. pp. 106901, Feb. 2021, doi: 10.1016/j.epsr.2020.106901.

[153]

V. Shanmugapriya, S. Vidyasagar, and K. Vijayakumar, “Recent developments in AC and DC microgrids: systematic evaluation of protection schemes,” International Journal of Renewable Energy Research, vol. 11, no. 4, pp. 1850–1870, Dec. 2021, doi: 10.20508/ijrer.v11i4.12377.g8338.

[154]
J. Reilly and S. S. M. Venkata, “Microgrid protection: its complexities & requirements[Guest Editorial],” IEEE Power and Energy Magazine, vol. 19, no. 3. pp. 14–19, May-Jun. 2021, doi: 10.1109/MPE.2021.3057949.
DOI
[155]
Z. Y. Cheng, E. A. Udren, J. H. Holbach, D. B. Hart, M. J. Reno, and M. E. Ropp, “Low voltage network protection utility workshop (summary and next steps),” Sandia National Laboratories, Albuquerque, SAND2022–1406, 2022.
DOI
[156]

A. A. Memon and K. Kauhaniemi, “An adaptive protection for radial AC microgrid using IEC 61850 communication standard: algorithm proposal using offline simulations,” Energies, vol. 13, no. 20, pp. 5316, Oct. 2020, doi: 10.3390/en13205316.

[157]
V. Farias, C. Cavalieri, and M. Kabalan, “Microgrid protection testing using a relay-hardware-in-the-loop testbed,” in Proceedings of 2021 North American Power Symposium, 2021, pp. 1–6, doi: 10.1109/NAPS52732.2021.9654656.
DOI
[158]
A. Anvari-Moghaddam, H. Abdi, B. Mohammadi-Ivatloo, and N. Hatziargyriou, Microgrids. Cham: Springer, 2021, doi: 10.1007/978-3-030-59750-4.
DOI
[159]
F. Flores-Espino, J. Giraldez Miner, and A. Pratt, “Networked microgrid optimal design and operations tool: regulatory and business environment study,” National Renewable Energy Laboratory, Golden, NREL/TP-6A20-70944, 2020, doi: 10.2172/1659812.
DOI
[160]

T. Z. Wu, Z. K. Wang, C. Fang, and S. Z. Liu, “Research on current limiting solid state circuit breaker for DC microgrid,” Electric Power Systems Research, vol. 209, pp. 107950, Aug. 2022, doi: 10.1016/j.epsr.2022.107950.

Publication history
Copyright
Rights and permissions

Publication history

Received: 13 November 2022
Revised: 23 March 2023
Accepted: 23 July 2023
Published: 08 September 2023
Issue date: March 2024

Copyright

© 2022 CSEE.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return