[2]
K. Engeland, M. Borga, J. D. Creutin, B. François, M. H. Ramos, and J. P. Vidal, “Space-time variability of climate variables and intermittent renewable electricity production–A review,”Renewable and Sustainable Energy Reviews, vol. 79, pp. 600–617, Nov. 2017.
[3]
J. M. Garrido-Perez, C. Ordóñez, D. Barriopedro, R. García-Herrera, and D. Paredes, “Impact of weather regimes on wind power variability in western Europe,”Applied Energy, vol. 264, pp. 114731, Apr. 2020.
[4]
Y. Chi, B. J. Tang, J. B. Hu, X. S. Tian, H. Y. Tang, Y. Li, S. J. Sun, L. Shi, and L. Shuai, “Overview of mechanism and mitigation measures on multi-frequency oscillation caused by large-scale integration of wind power,”CSEE Journal of Power and Energy Systems, vol. 5, no. 4, pp. 433–443, Dec. 2019.
[5]
M. Han, G. T. Bitew, S. A. Mekonnen, and W. L. Yan, “Wind power fluctuation compensation by variable speed pumped storage plants in grid integrated system: Frequency spectrum analysis,”CSEE Journal of Power and Energy Systems, vol. 7, no. 2, pp. 381–395, Mar. 2021.
[6]
G. R. Ren, J. F. Liu, J. Wan, Y. F. Guo, and D. R. Yu, “Overview of wind power intermittency: Impacts, measurements, and mitigation solutions,”Applied Energy, vol. 204, pp. 47–65, Oct. 2017.
[7]
X. P. Zhang and Z. H. Yan, “Energy quality: a definition,”IEEE Open Access Journal of Power and Energy, vol. 7, pp. 430–440, Oct. 2020.
[8]
Z. X. Lu, X. Ye, Y. Qiao, and Y. Min, “Initial exploration of wind farm cluster hierarchical coordinated dispatch based on virtual power generator concept,”CSEE Journal of Power and Energy Systems, vol. 1, no. 2, pp. 62–67, Jun. 2015.
[9]
W. Katzenstein, E. Fertig, and J. Apt, “The variability of interconnected wind plants,”Energy Policy, vol. 38, no. 8, pp. 4400–4410, Aug. 2010.
[10]
A. Malvaldi, S. Weiss, D. Infield, J. Browell, P. Leahy, and A. M. Foley, “A spatial and temporal correlation analysis of aggregate wind power in an ideally interconnected Europe,”Wind Energy, vol. 20, no. 8, pp. 1315–1329, Aug. 2017.
[11]
B. Hasche, “General statistics of geographically dispersed wind power,”Wind Energy, vol. 13, no. 8, pp. 773–784, Nov. 2010.
[12]
M. Shahriari and S. Blumsack, “Scaling of wind energy variability over space and time,”Applied Energy, vol. 195, pp. 572–585, Jun. 2017.
[13]
F. J. Santos-Alamillos, D. Pozo-Vázquez, J. A. Ruiz-Arias, V. Lara-Fanego, and J. Tovar-Pescador, “A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power,”Renewable Energy, vol. 69, pp. 147–156, Sep. 2014.
[14]
J. Olauson and M. Bergkvist, “Correlation between wind power generation in the European countries,”Energy, vol. 114, pp. 663–670, Nov. 2016.
[15]
G. R. Ren, J. Wan, J. F. Liu, and D. R. Yu, “Assessing temporal variability of wind resources in China and the spatial correlation of wind power in the selected regions,”Journal of Renewable and Sustainable Energy, vol. 12, no. 1, pp. 013302, Jan. 2020.
[16]
J. Hu, R. Harmsen, W. Crijns-Graus, and E. Worrell, “Geographical optimization of variable renewable energy capacity in China using modern portfolio theory,”Applied Energy, vol. 253, pp. 113614, Nov. 2019.
[17]
G. R. Ren, J. Wan, J. F. Liu, and D. R. Yu, “Spatial and temporal correlation analysis of wind power between different provinces in China,”Energy, vol. 191, pp. 116514, Jan. 2020.
[18]
L. Reichenberg, F. Johnsson, and M. Odenberger, “Dampening variations in wind power generation—The effect of optimizing geographic location of generating sites,”Wind Energy, vol. 17, no. 11, pp. 1631–1643, Nov. 2014.
[19]
S. M. Fisher, J. T. Schoof, C. L. Lant, and M. D. Therrell, “The effects of geographical distribution on the reliability of wind energy,”Applied Geography, vol. 40, pp. 83–89, Jun. 2013.
[20]
C. Y. Zhang, X. Lu, G. Ren, S. Chen, C. Y. Hu, Z. Y. Kong, N. Zhang, and A. M. Foley, “Optimal allocation of onshore wind power in China based on cluster analysis,”Applied Energy, vol. 285, pp. 116482, Mar. 2021.
[21]
L. Reichenberg, A. Wojciechowski, F. Hedenus, and F. Johnsson, “Geographic aggregation of wind power—An optimization methodology for avoiding low outputs,”Wind Energy, vol. 20, no. 1, pp. 19–32, Jan. 2017.
[22]
J. Kiviluoma, H. Holttinen, D. Weir, R. Scharff, L. Söder, N. Menemenlis, N. A. Cutululis, I. D. Lopez, E. Lannoye, A. Estanqueiro, E. Gomez-Lazaro, Q. Zhang, J. H. Bai, Y. H. Wan, and M. Milligan, “Variability in large-scale wind power generation,”Wind Energy, vol. 19, no. 9, pp. 1649–1665, Sep. 2016.
[23]
N. S. Pearre and L. G. Swan, “Spatial and geographic heterogeneity of wind turbine farms for temporally decoupled power output,”Energy, vol. 145, pp. 417–429, Feb. 2018.
[24]
H. Louie, “Correlation and statistical characteristics of aggregate wind power in large transcontinental systems,”Wind Energy, vol. 17, no. 6, pp. 793–810, Jun. 2014.
[25]
E. Lobato, K. Doenges, I. Egido, and L. Sigrist, “Limits to wind aggregation: Empirical assessment in the Spanish electricity system,”Renewable Energy, vol. 147, pp. 1321–1330, Mar. 2020.
[26]
E. Fertig, J. Apt, P. Jaramillo, and W. Katzenstein, “The effect of long-distance interconnection on wind power variability,”Environmental Research Letters, vol. 7, no. 3, pp. 034017, Aug. 2012.
[27]
M. M. Bandi, “Spectrum of wind power fluctuations,”Physical Review Letters, vol. 118, no. 2, pp. 028301, Jan. 2017.
[28]
U. B. Gunturu and C. A. Schlosser, “Behavior of the aggregate wind resource in the ISO regions in the United States,”Applied Energy, vol. 144, pp. 175–181, Apr. 2015.
[29]
M. Berger, D. Radua, R. Fonteneau, R. Henry, M. Glavic, X. Fettweis, M. Le Du, P. Panciatici, L. Balea, and D. Ernst, “Critical time windows for renewable resource complementarity assessment,”Energy, vol. 198, pp. 117308, May 2020.
[30]
M. Yang, L. B. Zhang, Y. Cui, Y. Zhou, Y. L. Chen, and G. G. Yan, “Investigating the wind power smoothing effect using set pair analysis,”IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1161–1172, Jul. 2020.
[31]
P. Henckes, A. Knaut, F. Obermüller, and C. Frank, “The benefit of long-term high resolution wind data for electricity system analysis,”Energy, vol. 143, pp. 934–942, Jan. 2018.
[32]
F. Raak, Y. Susuki, K. Tsuboki, M. Kato, and T. Hikihara, “Quantifying smoothing effects of wind power via Koopman mode decomposition: A numerical test with wind speed predictions in Japan,”Nonlinear Theory its Applications Ieice, vol. 8, no. 4, pp. 342–357, 2017.
[33]
G. B. Andresen, A. A. Søndergaard, and M. Greiner, “Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis,”Energy, vol. 93, pp. 1074–1088, Dec. 2015.
[34]
D. P. Schlachtberger, T. Brown, S. Schramm, and M. Greiner, “The benefits of cooperation in a highly renewable European electricity network,”Energy, vol. 134, pp. 469–481, Sep. 2017.
[35]
H. L. Liu, G. B. Andresen, and M. Greiner, “Cost-optimal design of a simplified highly renewable Chinese electricity network,”Energy, vol. 147, pp. 534–546, Mar. 2018.
[36]
J. Hörsch, F. Hofmann, D. Schlachtberger, and T. Brown, “PyPSA-Eur: An open optimisation model of the European transmission system,”Energy Strategy Reviews, vol. 22, pp. 207–215, Nov. 2018.
[37]
H. L. Liu, T. Brown, G. B. Andresen, D. P. Schlachtberger, and M. Greiner, “The role of hydro power, storage and transmission in the decarbonization of the Chinese power system,”Applied Energy, vol. 239, pp. 1308–1321, Apr. 2019.
[38]
W. Zappa, M. Junginger, and M. Van den Broek, “Is a 100% renewable European power system feasible by 2050?”Applied Energy, vol. 233–234, pp. 1027–1050, Jan. 2019.
[45]
A. Aghahosseini, D. Bogdanov, L. S. N. S. Barbosa, and C. Breyer, “Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030,”Renewable and Sustainable Energy Reviews, vol. 105, pp. 187–205, May 2019.
[46]
D. Bogdanov, J. Farfan, K. Sadovskaia, A. Aghahosseini, M. Child, A. Gulagi, A. S. Oyewo, and L. de Souza Noel, “Radical transformation pathway towards sustainable electricity via evolutionary steps,”Nature Communications, vol. 10, no. 1, pp. 1077, 2019.