Journal Home > Volume 29 , Issue 1-12

Lithium-sulfur (Li-S) batteries attract sustained attention because of their ultrahigh theoretical energy density of 2567 Wh·kg–1 and the actual value over 600 Wh·kg–1. Solid-state Li-S batteries (SSLSBs) emerge in the recent two decades because of the enhanced safety when compared to the liquid system. As for the SSLSBs, except for the difference in the conversion mechanism induced by the cathode materials themselves, the physical-chemical property of solid electrolytes (SEs) also significantly affects their electrochemical behaviors. On account of various reported Li-S batteries, the advantages and disadvantages in performance and the failure mechanism are discussed in this review. Based on the problems of the reported SSLSBs such as lower energy density and faster capacity fading, the strategies of building high-performance SSLSBs are classified. The review aims to afford fundamental understanding on the conversion mechanism of sulfur and engineering design at full-cell level, so as to promote the development of SSLSBs.


menu
Abstract
Full text
Outline
About this article

A Review on Solid-State Li-S Battery: From the Conversion Mechanism of Sulfur to Engineering Design

Show Author's information Huan-Huan JiaaChen-Ji HuaYi-Xiao ZhangaLi-Wei Chena,b,c( )
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Electrochemical Energy Device Research Center (SEED) and in-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, PR China
Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China

Abstract

Lithium-sulfur (Li-S) batteries attract sustained attention because of their ultrahigh theoretical energy density of 2567 Wh·kg–1 and the actual value over 600 Wh·kg–1. Solid-state Li-S batteries (SSLSBs) emerge in the recent two decades because of the enhanced safety when compared to the liquid system. As for the SSLSBs, except for the difference in the conversion mechanism induced by the cathode materials themselves, the physical-chemical property of solid electrolytes (SEs) also significantly affects their electrochemical behaviors. On account of various reported Li-S batteries, the advantages and disadvantages in performance and the failure mechanism are discussed in this review. Based on the problems of the reported SSLSBs such as lower energy density and faster capacity fading, the strategies of building high-performance SSLSBs are classified. The review aims to afford fundamental understanding on the conversion mechanism of sulfur and engineering design at full-cell level, so as to promote the development of SSLSBs.

Keywords: Failure mechanism, Conversion kinetics, Solid-state Li-S batteries, Dynamically stable interface, Engineering design

References(77)

[1]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2011, 11(1): 19-29.

[2]

Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nat. Energy, 2022, 7(4): 312-319.

[3]

Yang X F, Li X, Adair K, Zhang H M, Sun X L. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochem. Energy R., 2018, 1(3): 239-293.

[4]

Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Adv. Mater., 2019, 31(27): e1901125.

[5]

Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng D L. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries[J]. Adv. Sci., 2022, 9(12): e2106004.

[6]

Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chem. Soc. Rev., 2020, 49(7): 2140-2195.

[7]

Bonnick P, Muldoon J. The Dr Jekyll and Mr Hyde of lithium sulfur batteries[J]. Energy Environ. Sci., 2020, 13(12): 4808-4833.

[8]

Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Musameh M, Rees R J, Rüther T. Lithium-sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy Environ. Sci., 2014, 7(12): 3902-3920.

[9]

Ding B, Wang J, Fan Z J, Chen S, Lin Q Y, Lu X J, Dou H, Nanjundan A K, Yushin G, Zhang X G, Yamauchi Y. Solid-state lithium-sulfur batteries: Advances, challenges and perspectives[J]. Mater. Today, 2020, 40: 114-131.

[10]

Pan H, Cheng Z, He P, Zhou H S. A review of solid-state lithium-sulfur battery: Ion transport and polysulfide chemistry[J]. Energ. Fuel., 2020, 34(10): 11942-11961.

[11]

Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem. Soc. Rev., 2020, 49(23): 8790-8839.

[12]

Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Adv. Mater., 2019, 31(44): e1901131.

[13]

Chen R S, Li Q H, Yu X Q, Chen L Q, Li H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem. Rev., 2020, 120(14): 6820-6877.

[14]

Li X N, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ. Sci., 2020, 13(5): 1429-1461.

[15]

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686.

[16]

Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat. Energy, 2016, 1(4): 16030.

[17]

Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103.

[18]

Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwa J P, Wang C S, Xu X X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Adv. Energy Mater., 2017, 7(17): 1602923.

[19]

Fang R X, Xu H H, Xu B Y, Li X Y, Li Y T, Goodenough J B. Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte[J]. Adv. Funct. Mater., 2020, 31(2): 2001812.

[20]

Liu Y, Liu H W, Lin Y T, Zhao Y X, Yuan H, Su Y P, Zhang J F, Ren S Y, Fan H Y, Zhang Y G. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Adv. Funct. Mater., 2021, 31(41): 2104863.

[21]

Gao X, Zheng X L, Tsao Y C, Zhang P, Xiao X, Ye Y S, Li J, Yang Y F, Xu R, Bao Z N, Cui Y. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. J. Am. Chem. Soc., 2021, 143(43): 18188-18195.

[22]

Gao X, Zheng X, Wang J, Zhang Z, Xiao X, Wan J, Ye Y, Chou L Y, Lee H K, Wang J, Vilá R A, Yang Y, Zhang P, Wang L W, Cui Y. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries[J]. Nano Lett., 2020, 20(7): 5496-5503.

[23]

Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material[J]. J. Power Sources, 2008, 183(1): 422-426.

[24]

Wan H L, Zhang B, Liu S F, Zhang J X, Yao X Y, Wang C S. Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery[J]. Nano Lett., 2021, 21(19): 8488-8494.

[25]

Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): 4372.

[26]

Machida N, Kobayashi K, Nishikawa Y, Shigematsu T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes[J]. Solid State Ion., 2004, 175(1-4): 247-250.

[27]

Ulissi U, Ito S, Hosseini S M, Varzi A, Aihara Y, Passerini S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites[J]. Adv. Energy Mater., 2018, 8(26): 1801462.

[28]

Long P, Xu Q, Peng G, Yao X Y, Xu X X. NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability[J]. ChemElectroChem, 2016, 3(5): 764-769.

[29]

Zhang Q, Ding Z G, Liu G Z, Wan H L, Mwizerwa J P, Wu J H, Yao X Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2019, 23: 168-180.

[30]

Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Li H, Chen L Q, Xu X X. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Lett., 2016, 16(11): 7148-7154.

[31]

Shin B R, Nam Y J, Kim J W, Lee Y G, Jung Y S. Interfacial architecture for extra Li+ storage in all-solid-state lithium batteries[J]. Sci. Rep., 2014, 4: 5572.

[32]

Wang C H, Adair K R, Liang J W, Li X N, Sun Y P, Li X, Wang J W, Sun Q, Zhao F P, Lin X T, Li R Y, Huang H, Zhang L, Yang R, Lu S G, Sun X L. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Adv. Funct. Mater., 2019, 29(26): 1900392.

[33]

Wan H L, Liu S F, Deng T, Xu J J, Zhang J X, He X Z, Ji X, Yao X Y, Wang C S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery[J]. ACS Energy Lett., 2021, 6(3): 862-868.

[34]

Yi J, Chen L, Liu Y, Geng H, Fan L Z. High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnS2S12 solid electrolyte[J]. ACS Appl. Mater. Interfaces, 2019, 11(40): 36774-36781.

[35]

Wan J, Song Y X, Chen W P, Guo H J, Shi Y, Guo Y J, Shi J L, Guo Y G, Jia F F, Wang F Y, Wen R, Wan L J. Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution[J]. J. Am. Chem. Soc., 2021, 143(2): 839-848.

[36]

Wang L, Yin X, Jin C, Lai C, Qu G, Zheng G W. Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium-sulfur batteries[J]. ACS Appl. Energy Mater., 2020, 3(12): 11540-11547.

[37]

Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H W, Cui Y. Solid-State Lithium-sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Lett., 2017, 17(5): 2967-2972.

[38]

Wang Q S, Wen Z Y, Jin J, Guo J, Huang X, Yang J H, Chen C H. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. ChemComm., 2016, 52(8): 1637-1640.

[39]

Busche M R, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates[J]. J. Power Sources, 2014, 259: 289-299.

[40]

Kumaresan K, Mikhaylik Y, White R E. A mathematical model for a lithium-sulfur cell[J]. J. Electrochem. Soc., 2008, 155(8): A576-582.

[41]

Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969.

[42]

Hassoun J, Scrosati B. A high-performance polymer tin sulfur lithium ion battery[J]. Angew. Chem. Int. Ed., 2010, 49(13): 2371-2374.

[43]

Jeong S S, Lim Y T, Choi Y J, Cho G B, Kim K W, Ahn H J, Cho K K. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions[J]. J. Power Sources, 2007, 174(2): 745-750.

[44]

Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi T. All solid-state battery with sulfur electrode and thio-lisicon electrolyte[J]. J. Power Sources, 2008, 182(2): 621-625.

[45]

Song Y X, Shi Y, Wan J, Lang S Y, Hu X C, Yan H J, Liu B, Guo Y G, Wen R, Wan L J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study[J]. Energy Environ. Sci., 2019, 12(8): 2496-2506.

[46]

Wang L, Yin X, Li B, Zheng G W. Mixed ionically/electronically conductive double-phase interface enhanced solid-state charge transfer for a high-performance all-solid-state Li-S battery[J]. Nano Lett., 2022, 22(1): 433-440.

[47]

Eshetu G G, Judez X, Li C, Martinez-Ibanez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez L M, Zhang H, Armand M. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. J. Am. Chem. Soc., 2018, 140(31): 9921-9933.

[48]

Eshetu G G, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez L M, Zhang H, Armand M. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(48): 15368-15372.

[49]

Judez X, Zhang H, Li C, Eshetu G G, Zhang Y, González-Marcos J A, Armand M, Rodriguez-Martinez L M. Polymer-rich composite electrolytes for all-solid-state Li-S cells[J]. J. Phys. Chem. Lett., 2017, 8(15): 3473-3477.

[50]

Judez X, Zhang H, Li C, Gonzalez-Marcos J A, Zhou Z, Armand M, Rodriguez-Martinez L M. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. J. Phys. Chem. Lett., 2017, 8(9): 1956-1960.

[51]

Zhang H, Oteo U, Judez X, Eshetu G G, Martinez-Ibanez M, Carrasco J, Li C, Armand M. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702.

[52]

Chinnam P R, Xu L, Cai L, Cordes N L, Kim S, Efaw C M, Murray D J, Dufek E J, Xu H, Li B. Unlocking failure mechanisms and improvement of practical Li-S pouch cells through in operando pressure study[J]. Adv. Energy Mater., 2021, 12(7): 2103048.

[53]

Ohno S, Koerver R, Dewald G, Rosenbach C, Titscher P, Steckermeier D, Kwade A, Janek J, Zeier W G. Observation of chemomechanical failure and the influence of cut off potentials in all-solid-state Li-S batteries[J]. Chem. Mater., 2019, 31(8): 2930-2940.

[54]

Ohno S, Rosenbach C, Dewald G F, Janek J, Zeier W G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries[J]. Adv. Funct. Mater., 2021, 31(18): 2010620.

[55]

Lewis J A, Tippens J, Cortes F J Q, McDowell M T. Chemo-mechanical challenges in solid-state batteries[J]. Trends Chem., 2019, 1(9): 845-857.

[56]

Zhao B S, Wang L, Liu S, Li G R, Gao X P. High-efficiency hybrid sulfur cathode based on electroactive niobium tungsten oxide and conductive carbon nanotubes for all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14(1): 1212-1221.

[57]

Jiang M, Liu G, Zhang Q, Zhou D, Yao X. Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2021, 13(16): 18666-18672.

[58]

Yamamoto M, Goto S, Tang R, Nomura K, Hayasaka Y, Yoshioka Y, Ito M, Morooka M, Nishihara H, Kyotani T. Nano-confinement of insulating sulfur in the cathode composite of all-solid-State Li-S batteries using flexible carbon materials with large pore volumes[J]. ACS Appl. Mater. Interfaces, 2021, 13(32): 38613-38622.

[59]

Yue J, Huang Y L, Liu S F, Chen J, Han F D, Wang C S. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(32): 36066-36071.

[60]

Lin Z, Liu Z C, Dudney N J, Liang C D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829–2833.

[61]

Han F D, Yue J, Fan X L, Gao T, Luo C, Ma Z H, Suo L M, Wang C S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Lett., 2016, 16(7): 4521-4527.

[62]

Yan H F, Wang H C, Wang D H, Li X, Gong Z L, Yang Y. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Lett., 2019, 19(5): 3280-3287.

[63]

Hakari T, Fujita Y, Deguchi M, Kawasaki Y, Otoyama M, Yoneda Y, Sakuda A, Tatsumisago M, Hayashi A. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Adv. Funct. Mater., 2021, 32(5): 2106174.

[64]

Jiang Z, Li Z X, Wang X L, Gu C D, Xia X H, Tu J P. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface[J]. ACS Appl. Mater. Inter., 2021, 13(26): 30739-30745.

[65]

Jiang Z, Liang T B, Liu Y, Zhang S Z, Li Z X, Wang D H, Wang X L, Xia X H, Gu C D, Tu J P. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Appl. Mater. Inter., 2020, 12(49): 54662-54670.

[66]

Zhou L, Tufail M K, Ahmad N, Song T, Chen R, Yang W. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2021, 13(24): 28270-28280.

[67]

Wang S, Zhang Y, Zhang X, Liu T, Lin Y H, Shen Y, Li L, Nan C W. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2018, 10(49): 42279-42285.

[68]

Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv. Mater., 2020, 33(6): 2000751.

[69]

Gao H C, Xue L G, Xin S, Park K, Goodenough J B. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J]. Angew. Chem. Int. Ed., 2017, 56(20): 5541–5545.

[70]

Chen S J, Zhang J X, Nie L, Hu X C, Huang Y Q, Yu Y, Liu W. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Adv. Mater., 2021, 33(1): 2002325.

[71]

Wang J, Huang G, Chen K, Zhang X B. An adjustable-porosity plastic crystal electrolyte enables high-performance all-solid-state lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2020, 59(24): 9382–9387.

[72]

Alarco P J, Abu-Lebdeh Y, Abouimrane A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nat. Mater., 2004, 3(7): 476-481.

[73]

Xu R C, Yue J, Liu S F, Tu J P, Han F D, Liu P, Wang C S. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Lett., 2019, 4(5): 1073-1079.

[74]

Hao F, Liang Y L, Zhang Y, Chen Z Y, Zhang J B, Ai Q, Guo H, Fan Z, Lou J, Yao Y. High-energy all-solid-state organic-lithium batteries based on ceramic electrolytes[J]. ACS Energy Lett., 2020, 6(1): 201-207.

[75]

Zhang Y Y, Sun Y L, Peng L F, Yang J Q, Jia H H, Zhang Z R, Shan B, Xie J. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery[J]. Energy Storage Mater., 2019, 21: 287-296.

[76]

Dong D R, Zhou B, Sun Y F, Zhang H, Zhong G M, Dong Q Y, Fu F, Qian H, Lin Z Y, Lu D R, Shen Y B, Wu J H, Chen L W, Chen H W. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries[J]. Nano Lett., 2019, 19(4): 2343-2349.

[77]

Sun Y F, Zhong G M, Zhao Z, Cao M, Zhou H, Zhang S J, Qian H, Lin Z Y, Lu D R, Wu J H, Chen H W. Polymeric sulfur as a Li ion conductor[J]. Nano Lett., 2020, 20(3): 2191-2196.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 September 2022
Revised: 10 October 2022
Accepted: 04 November 2022
Published: 07 November 2022
Issue date: March 2023

Copyright

© 2023 Xiamen University and Chinese Chemical Society.

Acknowledgements

Acknowledgements

This work is supported by the National Key R&D Program of China (2021YFB3800300) and China Postdoctoral Science Foundation (BX20220199).

Rights and permissions

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return