Journal Home > Volume 29 , Issue 1-12

Aprotic lithium-oxygen batteries (LOBs) with high theoretical energy density have received considerable attention over the past years. However, the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) at cathodes suffer from slow kinetics for large overvoltages in LOBs. Significant advances on catalysts have been achieved to accelerate cathode kinetics, but understanding on the formation/decomposition processes of Li2O2 is limited. Herein, this review highlights the fundamental understanding of the correlation between catalysts and formation/decomposition of Li2O2. Various types of cathode catalysts are discussed to reveal the mechanism of formation/decomposition of Li2O2, aiming to present the prerequisites for the design of highly efficient cathode catalysts. Future prospects of comprehensive consideration on introduction of light or magnetism, protection of Li metal anode, and electrolyte engineering are presented for the further development of LOBs.


menu
Abstract
Full text
Outline
About this article

Advances and Challenges on Cathode Catalysts for Lithium-Oxygen Batteries

Show Author's information Bo WenaZhuo ZhuaFu-Jun Lia,b( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China

Abstract

Aprotic lithium-oxygen batteries (LOBs) with high theoretical energy density have received considerable attention over the past years. However, the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) at cathodes suffer from slow kinetics for large overvoltages in LOBs. Significant advances on catalysts have been achieved to accelerate cathode kinetics, but understanding on the formation/decomposition processes of Li2O2 is limited. Herein, this review highlights the fundamental understanding of the correlation between catalysts and formation/decomposition of Li2O2. Various types of cathode catalysts are discussed to reveal the mechanism of formation/decomposition of Li2O2, aiming to present the prerequisites for the design of highly efficient cathode catalysts. Future prospects of comprehensive consideration on introduction of light or magnetism, protection of Li metal anode, and electrolyte engineering are presented for the further development of LOBs.

Keywords: Reaction kinetics, Cathode catalysts, Aprotic lithium-oxygen batteries, Overvoltage, Formation/decomposition of Li2O2

References(64)

[1]

Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chem. Rev., 2020, 120(14): 6558–6625.

[2]

Zhang P, Ding M J, Li X X, Li C X, Li Z Q, Yin L W. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries[J]. Adv. Energy Mater., 2020, 10(40): 2001789.

[3]

Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. J. Electrochem. Soc., 1996, 143(1): 1–5.

[4]

Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chem. Rev., 2020, 120(14): 6626–6683.

[5]

Chen K, Yang D Y, Huang G, Zhang X B. Lithium-air batteries: Air-electrochemistry and anode stabilization[J]. Acc. Chem. Res., 2021, 54(3): 632–641.

[6]

Li F J, Chen J. Mechanistic evolution of aprotic lithium-oxygen batteries[J]. Adv. Energy Mater., 2017, 7(24): 1602934.

[7]

Lv Q L, Zhu Z, Ni Y X, Geng J R, Li F J. Spin-state manipulation of two-dimensional metal-organic framework with enhanced metal-oxygen covalency for lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202114293.

[8]

Hou Y, Wang J, Liu J Q, Hou C X, Xiu Z H, Fan Y Q, Zhao L L, Zhai Y J, Li H Y, Zeng J, Gao X, Zhou S, Li D W, Li Y, Dang F, Liang K, Chen P, Li C M, Zhao D Y, Kong B. Interfacial super-assembled porous CeO2/C frameworks featuring efficient and sensitive decomposing Li2O2 for smart Li-O2 batteries[J]. Adv. Energy Mater., 2019, 9(40): 1901751.

[9]

Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries[J]. J. Am. Chem. Soc., 2020, 142(39): 16776–16786.

[10]

Cai Y C, Zhang Q, Lu Y, Hao Z M, Ni Y X, Chen J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(49): 25973–25980.

[11]

Zhang X, Xie Z J, Zhou Z. Recent progress in protecting lithium anodes for Li-O2 batteries[J]. ChemElectroChem, 2019, 6 (7): 1969–1977.

[12]

Ma S Y, Yao H C, Li Z J, Liu Q C. Tuning the nucleation and decomposition of Li2O2 by fluorine-doped carbon vesicles towards high performance Li-O2 batteries[J]. J. Energy Chem., 2022, 70: 614–622.

[13]

Li Y, Zhang R, Chen B, Wang N, Sha J W, Ma L Y, Zhao D D, Liu E Z, Zhu S, Shi C S, Zhao N Q. Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries[J]. Energy Storage Mater., 2022, 44: 285–295.

[14]

Xu H Y, Zheng R X, Du D Y, Ren L F, Li R J, Wen X J, Zhao C, Shu C Z. V2C Mxene enriched with-O termination as high-efficiency electrocatalyst for lithium-oxygen battery[J]. Appl. Mater. Today, 2022, 27: 101464.

[15]

Xia H, Xie Q F, Tian Y H, Chen Q, Wen M, Zhang J L, Wang Y, Tang Y P, Zhang S Q. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries[J]. Nano Energy, 2021, 84: 105877.

[16]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11: 19–29.

[17]

Aurbach D, Mccloskey B D, Nazar L F, Bruce P G. Advances in understanding mechanisms underpinning lithium-air batteries[J]. Nat. Energy, 2016, 1: 16128.

[18]

Laoire C O, Mukerjee S, Abraham K M, Plichta E J, Hendrickson M A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications[J]. J. Phys. Chem. C, 2009, 113(46): 20127–20134.

[19]

Abraham K. A brief history of non-aqueous metal-air batteries[J]. ECS Trans., 2008, 3(42): 67.

[20]

Lyu Z Y, Yang L J, Luan Y P, Wang X R, Wang L J, Hu Z H, Lu J P, Xiao S N, Zhang F, Wang X Z, Huo F W, Huang W, Hu Z, Chen W. Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design[J]. Nano Energy, 2017, 36: 68–75.

[21]

Johnson L, Li C M, Liu Z, Chen Y H, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J M, Bruce P G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries[J]. Nat. Chem., 2014, 6(12): 1091–1099.

[22]

Oh S H, Black R, Pomerantseva E, Lee J H, Nazar L F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nat. Chem., 2012, 4(12): 1004–1010.

[23]

Wang D, Mu X W, He P, Zhou H S. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects[J]. Mater. Today, 2019, 26: 87–99.

[24]

Feng N N, He P, Zhou H S. Critical challenges in rechargeable aprotic Li-O2 batteries[J]. Adv. Energy Mater., 2016, 6(9): 1502303.

[25]

Zheng R X, Shu C Z, Chen X F, Yan Y, He M, Du D Y, Ren L F, Hu A J, Long J P. Unique intermediate adsorption enabled by anion vacancies in metal sulfide embedded MXene nanosheets overcoming kinetic barriers of oxygen electrode reactions in lithium-oxygen batteries[J]. Energy Storage Mater., 2021, 40: 41–50.

[26]

Sun B, Guo L M, Ju Y H, Munroe P, Wang E, Peng Z Q, Wang G X. Unraveling the catalytic activities of ruthenium nanocrystals in high performance aprotic Li-O2 batteries[J]. Nano Energy, 2016, 28: 486–494.

[27]

Wang Y, Liang Z J, Zou Q L, Cong G T, Lu Y C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2016, 120(12): 6459–6466.

[28]

Lodge A W, Lacey M J, Fitt M, Garcia-Araez N, Owen J R. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries[J]. Electrochim. Acta, 2014, 140: 168–173.

[29]

Black R, Lee J H, Adams B, Mims C A, Nazar L F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2013, 52(1): 392–396.

[30]

Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G. Rechargeable Li2O2 electrode for lithium batteries[J]. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.

[31]

Jiang H R, Zhao T S, Shi L, Tan P, An L. First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. C, 2016, 120(12): 6612–6618.

[32]

Wong R A, Dutta A, Yang C Z, Yamanaka K, Ohta T, Nakao A, Waki K, Byon H R. Structurally tuning Li2O2 by controlling the surface properties of carbon electrodes: Implications for Li-O2 batteries[J]. Chem. Mater., 2016, 28(21): 8006–8015.

[33]

Qian Z Y, Guo R, Ma Y L, Li C J, Du L, Wang Y, Du C Y, Huo H, Yin G P. Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries[J]. Chem. Eng. Sci., 2020, 214: 115413.

[34]

Zhao T, Yao Y, Yuan Y F, Wang M L, Wu F, Amine K, Lu J. A universal method to fabricating porous carbon for Li-O2 battery[J]. Nano Energy, 2021, 82: 105782.

[35]

Mccloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. Lett., 2012, 3(8): 997–1001.

[36]

Gallant B M, Mitchell R R, Kwabi D G, Zhou J G, Zuin L, Thompson C V, Shao-Horn Y. Chemical and morphological changes of Li-O2 battery electrodes upon cycling[J]. J. Phys. Chem. C, 2012, 116(39): 20800–20805.

[37]

Nasybulin E N, Xu W, Mehdi B L, Thomsen E, Engelhard M H, Massé R C, Bhattacharya P, Gu M, Bennett W, Nie Z M, Wang C M, Browning N D. Formation of interfacial layer and long-term cyclability of Li-O2 batteries[J]. ACS Appl. Mater. Inter., 2014, 6(16): 14141–14151.

[38]

Itkis D M, Semenenko D A, Kataev E Y, Belova A I, Neudachina V S, Sirotina A P, Hävecker M, Teschner D, Knop-Gericke A, Dudin P, Barinov A, Goodilin E A, Shao-Horn Y, Yashina L V. Reactivity of carbon in lithium-oxygen battery positive electrodes[J]. Nano Lett., 2013, 13(10): 4697–4701.

[39]

Shen Z Z, Zhou C, Wen R, Wan L J. Surface mechanism of catalytic electrodes in lithium-oxygen batteries: How nanostructures mediate the interfacial reactions[J]. J. Am. Chem. Soc., 2020, 142(37): 16007–16015.

[40]

Zhou Y, Yin K, Gu Q F, Tao L, Li Y J, Tan H, Zhou J H, Zhang W S, Li H B, Guo S J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(51): 26592–26598.

[41]

Yao W T, Yuan Y F, Tan G Q, Liu C, Cheng M, Yurkiv V, Bi X X, Long F, Friedrich C R, Mashayek F, Amine K, Lu J, Shahbazian-Yassar R. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts[J]. J. Am. Chem. Soc., 2019, 141(32): 12832–12838.

[42]

Sun Z H, Cao X C, Tian M, Zeng K, Jiang Y X, Rummeli M H, Strasser P, Yang R Z. Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(22): 2100110.

[43]

Zhou Y, Gu Q F, Li Y J, Tao L, Tan H, Yin K, Zhou J H, Guo S J. Cesium lead bromide perovskite-based lithium-oxygen batteries[J]. Nano Lett., 2021, 21(11): 4861–4867.

[44]

Sadighi Z, Liu J P, Zhao L, Ciucci F, Kim J K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries[J]. Nanoscale, 2018, 10(47): 22549–22559.

[45]

He B, Li G Y, Li J J, Wang J, Tong H, Fan Y Q, Wang W L, Sun S H, Dang F. MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(18): 2003263.

[46]

Zhang G L, Li G Y, Wang J, Tong H, Wang J C, Du Y, Sun S H, Dang F. 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries[J]. Adv. Energy Mater., 2022, 12(21): 2103910.

[47]

Li G Y, Li N, Peng S T, He B, Wang J, Du Y, Zhang W B, Han K, Dang F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(1): 2002721.

[48]

Wang P, Zhao D Y, Hui X B, Qian Z, Zhang P, Ren Y Y, Lin Y, Zhang Z W, Yin L W. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries[J]. Adv. Energy Mater., 2021, 11(32): 2003069.

[49]

Wang P, Ren Y Y, Wang R T, Zhang P, Ding M J, Li C X, Zhao D Y, Qian Z, Zhang Z W, Zhang L Y, Yin L W. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries[J]. Nat. Commun., 2020, 11(1): 1576.

[50]

Geng J R, Ni Y X, Zhu Z, Wu Q, Gao S N, Hua W B, Indris S, Chen J, Li F J. Reversible metal and ligand redox chemistry in two-dimensional iron-organic framework for sustainable lithium-ion batteries[J]. J. Am. Chem. Soc., 2023, 145(3): 1564–1571.

[51]

Xiao L, Yi J Y, Kou Z K, Li E W, Deng B H, Wang J, Liu J P. Combinational design of electronic structure and nanoarray architecture achieves a low-overpotential oxygen electrode for aprotic lithium-oxygen batteries[J]. Small Methods, 2020, 4(3): 1900619.

[52]

Kondori A, Jiang Z, Esmaeilirad M, Saray M T, Kakekhani A, Kucuk K, Delgado P N M, Maghsoudipour S, Hayes J, Johnson C S, Segre C U, Shahbazian-Yassar R, Rappe A M, Asadi M. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life[J]. Adv. Mater., 2020, 32(50): 2004028.

[53]

Lee G H, Sung M C, Kim Y S, Ju B, Kim D W. Organogermanium nanowire cathodes for efficient lithium-oxygen batteries[J]. ACS Nano, 2020, 14(11): 15894–15903.

[54]

Zhu Z, Shi X M, Fan G L, Li F J, Chen J. Photo-energy conversion and storage in an aprotic Li-O2 battery[J]. Angew. Chem. Int. Ed., 2019, 58(52): 19021–19026.

[55]

Zhu D D, Zhao Q C, Fan G L, Zhao S, Wang L B, Li F J, Chen J. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12460–12464.

[56]

Du D F, Zhao S, Zhu Z, Li F J, Chen J. Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery[J]. Angew. Chem. Int. Ed., 2020, 59(41): 18140–18144.

[57]

Lv Q L, Zhu Z, Zhao S, Wang L B, Zhao Q, Li F J, Archer L A, Chen J. Semiconducting metal-organic polymer nanosheets for a photoinvolved Li-O2 battery under visible light[J]. J. Am. Chem. Soc., 2021, 143(4): 1941–1947.

[58]

Zhu Z, Ni Y X, Lv Q L, Geng J R, Xiea W, Li F J, Chen J. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride[J]. PNAS, 2021, 118(17): e2024619118.

[59]

Zhu Z, Lv Q L, Ni Y X, Gao S N, Geng J R, Liang J, Li F J. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium-oxygen battery[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202116699.

[60]

Du D F, Zhu Z, Chan K Y, Li F J, Chen J. Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries[J]. Chem. Soc. Rev., 2022, 51(6): 1846–1860.

[61]
Zhu Z, Shi X M, Zhu D D, Wang L B, Lei K X, Li F J. A hybrid Na//K+-containing electrolyte//O2 battery with high rechargeability and cycle stability[J]. Research, 2019, 2019: 6180615.
DOI
[62]

Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6): 3205–3211.

[63]

Zhou X Z, Zhang Q, Zhu Z, Cai Y C, Li H X, Li F J. Anion reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries[J]. Angew. Chem. Int. Ed., 2022, 61(30): e202205045.

[64]

Cao W Z, Li Q, Yu X Q, Li H. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47–78.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 May 2022
Revised: 08 June 2022
Accepted: 22 June 2022
Published: 24 June 2022
Issue date: February 2023

Copyright

© 2023 Xiamen University and Chinese Chemical Society.

Acknowledgements

Acknowledgements

Thanks for the financial support of National Natural Science Foundation of China (52171215), Tianjin Natural Science Foundation (19JCJQJC62400), and Haihe Laboratory of Sustainable Chemical Transformations.

Rights and permissions

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return