Journal Home > Volume 5 , Issue 3

Cellulose, a natural polymer material with abundant natural sources, is non-toxic, renewable, and biodegradable, making it one of the most promising green materials. Its inherent hydrophilicity dramatically limits the development and application of cellulose products. Hydrophobic modification can significantly change cellulose properties and endow it with additional functions depending on the types of modifying molecules. Controlled modification of cellulose by long-chain hydrophobic molecules is challenging. Significant advances took advantage of new reaction systems and copolymerization. This paper reviews recent innovations in long-chain cellulose hydrophobic modification. A brief value-adding assessment provides a reference for green changes of cellulose to make it fit for future applications.


menu
Abstract
Full text
Outline
About this article

Modification of Cellulose by Hydrophobic Long-chain Molecules: Advances and Prospects

Show Author's information Yuyuan WangHaishan ZhangLeyi LinRui WuXiaoying WangJunli RenChuanfu LiuXiaohui Wang( )
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province, 510640, China

Abstract

Cellulose, a natural polymer material with abundant natural sources, is non-toxic, renewable, and biodegradable, making it one of the most promising green materials. Its inherent hydrophilicity dramatically limits the development and application of cellulose products. Hydrophobic modification can significantly change cellulose properties and endow it with additional functions depending on the types of modifying molecules. Controlled modification of cellulose by long-chain hydrophobic molecules is challenging. Significant advances took advantage of new reaction systems and copolymerization. This paper reviews recent innovations in long-chain cellulose hydrophobic modification. A brief value-adding assessment provides a reference for green changes of cellulose to make it fit for future applications.

Keywords: hydrophobic, chemical modification, cellulose, long-chain

References(81)

[1]

Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014, 43(5), 1519-1542.

[2]

Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: A new family of naturebased materials. Angewandte Chemie-International Edition, 2011, 50(24), 5438-5466.

[3]

Qiu X, Hu S. "Smart" materials based on cellulose: A review of the preparations, properties, and applications. Materials, 2013, 6(3), 738-781.

[4]

Courtenay J C, Sharma R I, Scott J L. Recent advances in modified cellulose for tissue culture applications. Molecules, 2018, DOI: 10.3390/molecules23030654.

[5]

Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2019.115463.

[6]

Rol F, Belgacem M N, Gandini A, Bras J. Recent advances in surface-modified cellulose nanofibrils. Progress In Polymer Science, 2019, 88, 241-264.

[7]

Xu Q, Chen C, Rosswurm K, Yao T, Janaswamy S. A facile route to prepare cellulose-based films. Carbohydrate Polymers, 2016, 149, 274-281.

[8]

Bendaoud A, Kehrbusch R, Baranov A, Duchemin B, Maigret J E, Falourd X, Staiger M P, Cathala B, Lourdin D, Leroy E. Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing. Carbohydrate Polymers, 2017, 168, 163-172.

[9]

Xiao H, Wu M, Zhao G. Electrocatalytic oxidation of cellulose to gluconate on carbon aerogel supported gold nanoparticles anode in alkaline medium. Catalysts, 2016, DOI: 10.3390/catal6010005.

[10]

Patankar S C, Renneckar S. Greener synthesis of nanofibrillated cellulose using magnetically separable tempo nanocatalyst. Green Chemistry, 2017, 19(20), 4792-4797.

[11]

Lucia A, van Herwijnen H W G, Oberlerchner J T, Rosenau T, Beaumont M. Resource-saving production of dialdehyde cellulose: Optimization of the process at high pulp consistency. ChemSusChem, 2019, 12(20), 4679-4684.

[12]

Singh M, Kaushik A, Ahuja D. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters. Carbohydrate Polymers, 2016, 150, 48-56.

[13]

Vasconcelos N F, Feitosa J P A, Andrade F K, Ribeiro Miranda M A, Sasaki J M, Saraiva Morais J P, Alexandre e Silva L M, Canuto K M, de Freitas Rosa M. Chemically modified cellulose nanocrystals as polyanion for preparation of polyelectrolyte complex. Cellulose, 2019, 26 (3), 1725-1746.

[14]

Cai X M, Chen X, Chen X F, Li Y, Wang F. A luminescent cellulose ether with a regenerated crystal form obtained in tetra(n-butyl)ammonium hydroxide/dimethyl sulfoxide. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2019.115649.

[15]

Wang X D, Wu M, Zhang B M, Zhang Y L, Hu C X, Shi L Y, Lv Y S, Ran R. Phase-transfer method synthesis hydroxyethyl cellulose lauryl ether. Colloids And Surfaces A-Physicochemical and Engineering Aspects, 2019, 562, 383-391.

[16]

Chitpong N, Husson S M. Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. Journal of Membrane Science, 2017, 523, 418-429.

[17]

Wang W, Yu Y, Wang P, Wang Q, Li Y, Yuan J, Fan X. Controlled graft polymerization on the surface of filter paper via enzyme-initiated raft polymerization. Carbohydrate Polymers, 2019, 207, 239-245.

[18]

Yang X, Ku T-H, Biswas S K, Yano H, Abe K. UV grafting: Surface modification of cellulose nanofibers without the use of organic solvents. Green Chemistry, 2019, 21(17), 4619-4624.

[19]

Qi H, Liebert T, Meister F, Zhang L, Heinze T. Homogenous carboxymethylation of cellulose in the new alkaline solvent LiOH/Urea aqueous solution. Macromolecular Symposia, 2010, 294(2), 125-132.

[20]

Wang Y, Wang X, Xie Y, Zhang K. Functional nanomaterials through esterification of cellulose: A review of chemistry and application. Cellulose, 2018, 25(7), 3703-3731.

[21]

Jebrane M, Terziev N, Heinmaa I. Biobased and sustainable alternative route to long-chain cellulose esters. Biomacromolecules, 2017, 18(2), 498-504.

[22]

Wen X, Wang H, Wei Y, Wang X, Liu C. Preparation and characterization of cellulose laurate ester by catalyzed transesterification. Carbohydrate Polymers, 2017, 168, 247-254.

[23]

Onwukamike K N, Grelier S, Grau E, Cramail H, Meier M A R. Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU-CO2 switchable solvent. ACS Sustainable Chemistry & Engineering, 2018, 6(7), 8826-8835.

[24]

Yang Y, Guo Y, Sun R, Wang X. Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graftlinoleic acid nanomicelles. Carbohydrate Polymers, 2016, 145, 56-63.

[25]

Guo Y, Wang X, Li D, Du H, Wang X, Sun R. Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polymer Bulletin, 2012, 69(4), 389-403.

[26]

Guo Y, Zhang L, Li H, Han Y, Zhou J, Wang X. Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid and Polymer Science, 2015, 294(1), 135-143.

[27]

Kedzior S A, Zoppe J O, Berry R M, Cranston E D. Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Current Opinion in Solid State & Materials Science, 2018, DOI: 10.1016/j.cossms.2018.11.005.

[28]

Garcia-Valdez O, Champagne P, Cunningham M F. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Progress in Polymer Science, 2017, DOI: 10.1016/j.progpolymsci.2017.08.001.

[29]

Mulyadi A, Deng Y. Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose, 2016, 23 (1), 519-528.

[30]

Patil N V, Netravali A N. Direct assembly of silica nanospheres on halloysite nanotubes for "green" ultrahydrophobic cotton fabrics. Advanced Sustainable Systems, 2019, DOI: 10.1002/adsu.201900009.

[31]

Ji Y, Wen Y, Wang Z, Zhang S, Guo M. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(Ⅱ) and organic pollutants removal. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.120276.

[32]

Rosli N A, Ahmad I, Abdullah I, Anuar F H, Mohamed F. Hydrophobic modification of cellulose isolated from agave angustifolia fibre by graft copolymerisation using methyl methacrylate. Carbohydrate Polymers, 2015, 125, 69-75.

[33]

Rosli N A, Ahmad I, Anuar F H, Abdullah I. Application of polymethylmethacrylate-grafted cellulose as reinforcement for compatibilised polylactic acid/natural rubber blends. Carbohydrate Polymers, 2019, 213, 50-58.

[34]

Mulyadi A, Zhang Z, Deng Y. Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Applied Materials & Interfaces, 2016, 8(4), 2732-2740.

[35]

Miao C, Hamad W Y. In-situ polymerized cellulose nanocrystals (CNC)-poly(L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydrate Polymers, 2016, 153, 549-558.

[36]

Guo Y, Liu Q, Chen H, Wang X, Shen Z, Shu X, Sun R. Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose, 2012, 20(2), 873-884.

[37]

Guo Y, Wang X, Shu X, Shen Z, Sun R C. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly (lactide) nanomicelles. Journal of Agricultural and Food Chemistry, 2012, 60(15), 3900-3908.

[38]

Ge W, Guo Y, Zhong H, Wang X, Sun R. Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone). Cellulose, 2015, 22(4), 2365-2374.

[39]

Zhong H, Zhang J, Guo Y, Wang L, Ge W, Chen M, Sun R, Wang X. Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging. Cellulose, 2017, 24(2), 889-902.

[40]

Guo Y, Zhang J, Wang L, Ge W, Chen M, Wang X, Sun R. Preparation of fluorescent core/shell nanoparticles from amphiphilic cellulose-based copolymers for tumor cell imaging. Journal of Controlled Release, 2015, DOI: 10.1016/j.jconrel.2015.05.223.

[41]

Li Z, Guo Y, Zhou J, Sun G, Han Y, Wang X. Synthesis and characterization of cellulose-graft-poly(p-dioxanone) copolymers via homogeneous ring-opening graft polymerization in ionic liquids. Bioresources, 2016, DOI: 10.15376/biores.11.1.2698-2711.

[42]

Guo Y, Wang X, Shen Z, Shu X, Sun R. Preparation of cellulose-graft-poly(ε-caprolactone) nanomicelles by homogeneous rop in ionic liquid. Carbohydrate Polymers, 2013, 92(1), 77-83.

[43]

Liu Z, Chen M, Guo Y, Wang X, Zhang L, Zhou J, Li H, Shi Q. Self-assembly of cationic amphiphilic cellulose-gpoly(p-dioxanone) copolymers. Carbohydrate Polymers, 2019, 204, 214-222.

[44]

Xie H, Yu X, Yang Y, Zhao Z K. Capturing CO2 for cellulose dissolution. Green Chemistry, 2014, 16(5), 2422-2427.

[45]

Zhang Q, Oztekin N S, Barrault J, De Oliveira Vigier K, Jérôme F. Activation of microcrystalline cellulose in a CO2- based switchable system. ChemSusChem, 2013, 6(4), 593-596.

[46]

Song L, Yang Y, Xie H, Liu E. Cellulose dissolution and in situ grafting in a reversible system using an organocatalyst and carbon dioxide. ChemSusChem, 2015, 8(19), 3217-3221.

[47]

Träger A, Klein G, Carrick C, Pettersson T, Johansson M, Wågberg L, Pendergraph S A, Carlmark A. Macroscopic cellulose probes for the measurement of polymer grafted surfaces. Cellulose, 2019, 26(3), 1467-1477.

[48]

Glasing J, Champagne P, Cunningham M F. Graft modification of chitosan, cellulose and alginate using reversible deactivation radical polymerization (RDRP). Current Opinion in Green and Sustainable Chemistry, 2016, 2, 15-21.

[49]

Carlmark A, Malmström E. Atom transfer radical polymerization from cellulose fibers at ambienttemperature. Journal of the American Chemical Society, 2002, 124(6), 900-901.

[50]

Zoppe J O, Dupire A V M, Lachat T G G, Lemal P, Rodriguez-Lorenzo L, Petri-Fink A, Weder C, Klok H-A. Cellulose nanocrystals with tethered polymer chains: Chemically patchy versus uniform decoration. ACS Macro Letters, 2017, 6(9), 892-897.

[51]

Risteen B, McBride M, Gonzalez M, Khau B, Zhang G, Reichmanis E. Functionalized cellulose nanocrystalmediated conjugated polymer aggregation. ACS Applied Materials & Interfaces, 2019, 11(28), 25338-25350.

[52]

Ma A, Zhang J, Wang N, Bai L, Chen H, Wang W, Yang H, Yang L, Niu Y, Wei D. Surface-initiated metal-free photoinduced ATRP of 4-vinylpyridine from SiO2 via visible light photocatalysis for self-healing hydrogels. Industrial & Engineering Chemistry Research, 2018, 57 (51), 17417-17429.

[53]

Discekici E H, Anastasaki A, Read de Alaniz J, Hawker C J. Evolution and future directions of metal-free atom transfer radical polymerization. Macromolecules, 2018, 51 (19), 7421-7434.

[54]

Lu C, Wang C, Yu J, Wang J, Chu F. Metal-free atrp "grafting from" technique for renewable cellulose graft copolymers. Green Chemistry, 2019, 21(10), 2759-2770.

[55]

Arredondo J, Jessop P G, Champagne P, Bouchard J, Cunningham M F. Synthesis of CO2-responsive cellulose nanocrystals by surface-initiated Cu(0)-mediated polymerisation. Green Chemistry, 2017, 19(17), 4141-4152.

[56]

Stenzel M H, Davis T P, Fane A G. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the raft process. Journal of Materials Chemistry, 2003, 13(9), 2090-2097.

[57]

Kollarigowda R H, Abraham S, Montemagno C D. Antifouling cellulose hybrid biomembrane for effective oil/ water separation. ACS Applied Materials & Interfaces, 2017, 9(35), 29812-29819.

[58]

Ott M W, Herbert H, Graf M, Biesalski M. Cellulose-graftpolystyrene bottle-brush copolymers by homogeneous RAFT polymerization of soluble cellulose macro-CTAs and "CTA-shuttled" R-group approach. Polymer, 2016, 98, 505-515.

[59]

Liu B, Yang D, Man H, Liu Y, Chen H, Xu H, Wang W, Bai L. A green pickering emulsion stabilized by cellulose nanocrystals via RAFT polymerization. Cellulose, 2018, 25 (1), 77-85.

[60]

Zhou J H, Li Y N, Li H, Yao H T. Cellulose nanocrystals/fluorinated polyacrylate soap-free emulsion prepared via RAFT-assisted pickering emulsion polymerization. Colloids and Surfaces B-Biointerfaces, 2019, 177, 321-328.

[61]

Cheng Z, Liu Y, Zhang D, Lu C, Wang C, Xu F, Wang J, Chu F. Sustainable elastomers derived from cellulose, rosin and fatty acid by a combination of "graft from" RAFT and isocyanate chemistry. International Journal of Biological Macromolecules, 2019, 131, 387-395.

[62]

Cunha A G, Gandini A. Turning polysaccharides into hydrophobic materials: A critical review. Part 1. Cellulose. Cellulose, 2010, 17(5), 875-889.

[63]

Gupta A D, Pandey S, Jaiswal V K, Bhadauria V, Singh H. Simultaneous oxidation and esterification of cellulose for use in treatment of water containing Cu(Ⅱ) ions. Carbohydrate Polymers, 2019, DOI: 10.1016/j.carbpol.2019.06.003.

[64]

Huang L, Wu Q, Wang Q, Ou R, Wolcott M. Solvent-free pulverization and surface fatty acylation of pulp fiber for property-enhanced cellulose/polypropylene composites. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.118811.

[65]

Peng S X, Chang H, Kumar S, Moon R J, Youngblood J P. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification. Cellulose, 2016, 23(3), 1825-1846.

[66]

Hirose D, Kusuma S B W, Ina D, Wada N, Takahashi K. Direct one-step synthesis of a formally fully bio-based polymer from cellulose and cinnamon flavor. Green Chemistry, 2019, 21(18), 4927-4931.

[67]

Cao X, Peng X, Zhong L, Sun S, Yang D, Zhang X, Sun R. A novel transesterification system to rapidly synthesize cellulose aliphatic esters. Cellulose, 2013, 21(1), 581-594.

[68]

Ding J, Li C, Liu J, Lu Y, Qin G, Gan L, Long M. Time and energy-efficient homogeneous transesterification of cellulose under mild reaction conditions. Carbohydrate Polymers, 2017, 157, 1785-1793.

[69]

Hinner L P, Wissner J L, Beurer A, Nebel B A, Hauer B. Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chemistry, 2016, 18(22), 6099-6107.

[70]

Chen H, Yang F, Du J, Xie H, Zhang L, Guo Y, Xu Q, Zheng Q, Li N, Liu Y. Efficient transesterification reaction of cellulose with vinyl esters in DBU/DMSO/CO2 solvent system at low temperature. Cellulose, 2018, 25(12), 6935-6945.

[71]

Lazzari L K, Zampieri V B, Zanini M, Zattera A J, Baldasso C. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose, 2017, 24(8), 3421-3431.

[72]

Khanjanzadeh H, Behrooz R, Bahramifar N, GindlAltmutter W, Bacher M, Edler M, Griesser T. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. International Journal of Biological Macromolecules, 2018, 106, 1288-1296.

[73]

Xu Q, Song Z, Xin F, Wang H, Yu D, Li G, Liu W. Preparation of hydrophobic transparent paper via using polydimethylsiloxane as transparent agent. Journal of Bioresources and Bioproducts, 2020, 5, 39-45.

[74]

Russell M H, Nilsson H, Buck R C. Elimination kinetics of perfluorohexanoic acid in humans and comparison with mouse, rat and monkey. Chemosphere, 2013, 93(10), 2419-2425.

[75]

Yu L, Zhang Z, Tang H, Zhou J. Fabrication of hydrophobic cellulosic materials via gas-solid silylation reaction for oil/water separation. Cellulose, 2019, 26(6), 4021-4037.

[76]

Tang X, Wang X, Tang C, Ma J, Zhang S, Li Z, Dong F. PDA-assisted one-pot fabrication of bioinspired filter paper for oil-water separation. Cellulose, 2019, 26(2), 1355-1366.

[77]

Wang H, Zhou H, Liu S, Shao H, Fu S, Rutledge G C, Lin T. Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC Advances, 2017, 7(54), 33986-33993.

[78]

Zhang H, Li Y, Xu Y, Lu Z, Chen L, Huang L, Fan M. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Physical Chemistry Chemical Physics, 2016, 18(40), 28297-28306.

[79]

Sun D, Wang W, Yu D. Highly hydrophobic cotton fabrics prepared with fluorine-free functionalized silsesquioxanes. Cellulose, 2017, 24(10), 4519-4531.

[80]

Hou K, Zeng Y, Zhou C, Chen J, Wen X, Xu S, Cheng J, Pi P. Facile generation of robust poss-based superhydrophobic fabrics via thiol-ene click chemistry. Chemical Engineering Journal, 2018, 332, 150-159.

[81]

Kostić S, Berg J K, Casdorff K, Merk V, Burgert I, Cabane E. A straightforward thiol-ene click reaction to modify lignocellulosic scaffolds in water. Green Chemistry, 2017, 19(17), 4017-4022.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 May 2020
Accepted: 20 June 2020
Published: 15 July 2020
Issue date: July 2020

Copyright

© 2020 Paper and Biomaterials

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51673072) and the Fundamental Research Funds for the Central Universities and South China University of Technology (Nos. 2019ZD31 and 2019PY13).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return