Journal Home > Volume 5 , Issue 3

Chiroptical materials are widely used in photonic devices, enantioselective catalysis and bio-sensors. Cellulose-base chiroptical materials with multilength scale structural hierarchy and unique light manipulation ability found in nature provide inspiration for materials design. Cellulose nanocrystals (CNC) display twisted rod morphology and hierarchical chirality. Leveraging the evaporation-induced self-assembly of negatively charged CNC, a broad realm of CNC-based chiroptical materials featuring one-dimensional photonic bandgap and novel chiroptical properties have been developed, which are of scientific and technological significance. Here we presented a brief overview on CNC-based chiroptical materials by evaporation-induced self-assembly, showed energy and chirality transfer in a host-guest environment leading to photonic bandgap modulation of optoelectronic properties, outlined novel chiroptical phenomena and their underlying principles, and demonstrated the application potentials of the CNC-based chiroptical materials.


menu
Abstract
Full text
Outline
About this article

Cellulose Nanocrystals-based Chiroptical Materials

Show Author's information Jiawei TaoYan Xu( )
State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun, Jilin Province, 130012, China

Abstract

Chiroptical materials are widely used in photonic devices, enantioselective catalysis and bio-sensors. Cellulose-base chiroptical materials with multilength scale structural hierarchy and unique light manipulation ability found in nature provide inspiration for materials design. Cellulose nanocrystals (CNC) display twisted rod morphology and hierarchical chirality. Leveraging the evaporation-induced self-assembly of negatively charged CNC, a broad realm of CNC-based chiroptical materials featuring one-dimensional photonic bandgap and novel chiroptical properties have been developed, which are of scientific and technological significance. Here we presented a brief overview on CNC-based chiroptical materials by evaporation-induced self-assembly, showed energy and chirality transfer in a host-guest environment leading to photonic bandgap modulation of optoelectronic properties, outlined novel chiroptical phenomena and their underlying principles, and demonstrated the application potentials of the CNC-based chiroptical materials.

Keywords: optoelectronics, cellulose nanocrystals, chiroptical materials, photonic bandgaps, energy and chirality transfer

References(110)

[1]

Lv J, Ding D, Yang X, Hou K, Miao X, Wang D, Kou B, Huang L, Tang Z. Biomimetic Chiral Photonic Crystals. Angewandte Chemie International Edition, 2019, 58(23), 7783-7787.

[2]

Cho S, Li Y, Seo M, Seo M, Kumacheva E. Nanofibrillar Stimulus-Responsive Cholesteric Microgels with Catalytic Properties. Angewandte Chemie International Edition, 2016, 55(45), 14014-14018.

[3]

Wang X, Tang Z. Circular Dichroism Studies on Plasmonic Nanostructures. Small, 2017, DOI: 10.1002/smll.201601115.

[4]

Lv J, Hou K, Ding D, Wang D, Han B, Gao X, Zhao M, Shi L, Guo J, Zheng Y, et al. Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angewandte Chemie International Edition, 2017, 56(18), 5055-5060.

[5]

Niu D, Jiang Y, Ji L, Ouyang G, Liu M. Self-Assembly through Coordination and π-Stacking: Controlled Switching of Circularly Polarized Luminescence. Angewandte Chemie International Edition, 2019, 58(18), 5946-5950.

[6]

Lee H E, Ahn H Y, Mun J, Lee Y, Kim M, Cho N, Chang K, Kim W, Rho J, Nam K. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature, 2018, 556(7701), 360-365.

[7]

Nagaoka Y, Tan R, Li R, Zhu H, Eggert D, Wu Y, Liu Y, Wang Z, Chen O. Superstructures Generated from Truncated Tetrahedral Quantum Dots. Nature, 2018, 561(7723), 378-382.

[8]

Wang Y, Xu J, Wang Y, Chen H. Emerging Chirality in Nanoscience. Chemical Society Reviews, 2013, 42(7), 2930-2962.

[9]

Thiel M, Freymann G, Wegener M. Layer-by-Layer ThreeDimensional Chiral Photonic Crystals. Optics Letters, 2007, 32(17), 2547-2549.

[10]

Mokashi-Punekar S, Zhou Y, Brooks S, Rosi N. Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects. Advanced Materials, 2019, DOI:10.1002/adma.201905975.

[11]

Lan X, Su Z, Zhou Y, Meyer T, Ke Y, Wang Q, Chiu W, Liu N, Zou S, Yan H, Liu Y. Programmable Supra-Assembly of a DNA Surface Adapter for Tunable Chiral Directional Self-Assembly of Gold Nanorods. Angewandte Chemie International Edition, 2017, 56(46), 14632-14636.

[12]

Wang L, Li Q. Photochromism into Nanosystems: Towards Lighting up the Future Nanoworld. Chemical Society Reviews, 2018, 47(3), 1044-1097.

[13]

Yeom J, Yeom B, Chan H, Smith K, Dominguez-Medina S, Bahng J, Zhao G, Chang W, Chang S, Chuvilin A, et al. Chiral Templating of Self-Assembling Nanostructures by Circularly Polarized Light. Nature Materials, 2015, 14(1), 66-72.

[14]

Joannopoulos J, Villeneuve P, Fan S. Photonic Crystals: Putting a New Twist on Light. Nature, 1997, 386, 143-149.

[15]

Foresi J, Villeneuve P, Ferrera J, Thoen E, Steinmeyer G, Fan S, Joannopoulos J, Kimerling L, Smith H, Ippen E. Photonic-Bandgap Microcavities in Optical Waveguides. Nature, 1997, 390, 143-145.

[16]

Jin L, Li H, Lin Q, Li C. Improving Sideband of Chiral Photonic Crystal Based on PSTD Approach. Optics Communications, 2007, 279, 43-49.

[17]

Lagerwall J, Schütz C, Salajkova M, Noh J, Park J, Scalia G, Bergstrom L. Cellulose Nanocrystal-Based Materials: from Liquid Crystal Self-Assembly and Glass Formation to Multifunctional Thin Films. NPG Asia Materials, 2014, DOI: 10.1038/am.2013.69.

[18]

Mariano M, El Kissi N, Dufresne A. Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(12), 791-806.

DOI
[19]

Qiu X, Hu S. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials, 2013, 6(3), 738-781.

[20]

Gray D G. Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films. Nanomaterials, 2016, DOI: 10.3390/nano6110213.

[21]

Trache D, Hussin M, Mohamad Haafiz M, Thakur V. Recent Progress in Cellulose Nanocrystals: Sources and Production. Nanoscale, 2017, 9(5), 1763-1786.

[22]

Habibi Y, Lucia L A, Rojas O J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 2010, 110(6), 3479-3500.

[23]

Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, BenShalom T, Lapidot S, Shoseyov O. Nanocellulose, a Tiny Fiber with Huge Applications. Current Opinion in Biotechnology, 2016, 39, 76-88.

[24]

Cao Y, Lewis L, Hamad W, MacLachlan M. PressureResponsive Hierarchical Chiral Photonic Aerogels. Advanced Materials, 2019, DOI:10.1002/adma.201808186.

[25]

Mu R, Hong X, Ni Y, Li Y, Pang J, Wang Q, Xiao J, Zheng Y. Recent Trends and Applications of Cellulose Nanocrystals in Food Industry. Trends in Food Science & Technology, 2019, 93, 136-144.

[26]

Li Y, Jun-Yan Suen J, Prince E, Larin E, Klinkova A, Thérien-Aubin H, Zhu S, Yang B, Helmy A, Lavrentovich O, et al. Colloidal Cholesteric Liquid Crystal in Spherical Confinement. Nature Communications, 2016, DOI: 10.1038/ncomms12520.

[27]

Cho H, Gross A, Chu J. Dissecting Force Interactions in Cellulose Deconstruction Reveals the Required Solvent Versatility for Overcoming Biomass Recalcitrance. Journal of the American Chemical Society, 2011, 133(35), 14033-14041.

[28]

Zhao T, Parker R, Williams C A, Lim K, Frka-Petesic B, Vignolini S. Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays. Advanced Functional Materials, 2018, DOI:10.1002/adfm.201804531.

[29]

Nickerson R, Habrle J. Cellulose Intercrystalline Structure. Industrial and Engineering Chemistry, 1947, 39(11), 1507-1512.

[30]

Lin N, Dufresne A. Nanocellulose in Biomedicine: Current Status and Future Prospect. European Polymer Journal, 2014, 59, 302-325.

[31]

Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules, 2008, 9(1), 57-65.

[32]

Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J. Computer Simulation Studies of Microcrystalline Cellulose Iβ. Carbohydrate Research, 2006, 341(1), 138-152.

[33]

Paavilainen S, Rog T, Vattulainen I. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 2011, 115(14), 3747-3755.

[34]

Orts W. Enhanced Ordering of Liquid Crystalline Suspensions of Cellulose Microfibrils: A Small Angle Neutron Scattering Study. Macromolecules, 1998, 31, 5717-5725.

[35]

Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R. Understanding Nanocellulose Chirality and Structure-Properties Relationship at the Single Fibril Level. Nature Communications, 2015, DOI: 10.1038/ncomms8564.

[36]

Gebauer D, Oliynyk V, Salajkova M, Sort J, Zhou Q, Bergström L, Salazar-Alvarez G. A Transparent Hybrid of Nanocrystalline Cellulose and Amorphous Calcium Carbonate Nanoparticles. Nanoscale, 2011, 3(9), 3563-3566.

[37]

Cirtiu C, Dunlop-Briere A, Moores A. Cellulose Nanocrystallites as an Efficient Support for Nanoparticles of Palladium: Application for Catalytic Hydrogenation and Heck Coupling under Mild Conditions. Green Chemistry, 2011, 13(2), 288-291.

[38]

Revol J, Bradford H, Giasson J, Marchessault R, Gray D. Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension. International Journal of Biological Macromolecules, 1992, 14(3), 170-172.

[39]

Oguzlu H, Danumah C, Boluk Y. Colloidal Behavior of Aqueous Cellulose Nanocrystal Suspensions. Current Opinion in Colloid & Interface Science, 2017, 29, 46-56.

[40]

Onsager L. The Effects of Shape on the Interaction of Colloidal Particles. Annals of The New York Academy of Sciences, 1949, 51(4), 627-659.

[41]

Vignolini S, Rudall P, Rowland A, Reed A, Moyroud E, Faden R, Baumberg J, Glover B, Steiner U. Pointillist Structural Color in Pollia Fruit. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39), 15712-15715.

[42]

Revol J F, Marchessault R H. In Vitro Chiral Nematic Ordering of Chitin Crystallites. International Journal of Biological Macromolecules, 1993, 15(6), 329-335.

[43]

Dong X, Gray D. Induced Circular Dichroism of Isotropic and Magnetically-Oriented Chiral Nematic Suspensions of Cellulose Crystallite. Langmuir, 1997, 13, 3029-3034.

[44]

Dumanli A, Kooij H, Kamita G, Reisner E, Baumberg J, Steiner U, Vignolini S. Digital Color in Cellulose Nanocrystal Films. ACS Applied Materials & Interfaces, 2014, 6(15), 12302-12306.

[45]

Psarobas I. Effective-Medium Description of DielectricChiral Photonic Crystals. Optics Communications, 1999, 162, 21-25.

[46]

Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S, Xu Y. Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications. Advanced Materials, 2018, DOI: 10.1002/adma.201705948.

[47]

Almeida A P C, Canejo J P, Fernandes S N, Echeverria C, Almeida P, Godinho, M. Cellulose-Based Biomimetics and Their Applications. Advanced Materials, 2018, DOI: 10.1002/adma.201703655.

[48]

Parker R, Guidetti G, Williams C A, Zhao T, Narkevicius A, Vignolini S, Frka-Petesic B. The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. Advanced Materials, 2018, DOI: 10.1002/ adma.201704477.

[49]

Beck S, Bouchard J, Chauve G, Berry R. Controlled Production of Patterns in Iridescent Solid Films of Cellulose Nanocrystals. Cellulose, 2013, 20(3), 1401-1411.

[50]

Tran A, Hamad W, MacLachlan M. Fabrication of Cellulose Nanocrystal Films through Differential Evaporation for Patterned Coatings. ACS Applied Nano Materials, 2018, 1(7), 3098-3104.

[51]

Stephanie B, Richard B. Controlling the Reflection Wavelength of Iridescent Solid Films of Nanocrystalline Cellulose. Biomacromolecules, 2011, 12, 167-172.

[52]

Frka-Petesic B, Radavidson H, Jean B, Heux L. Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields. Advanced Materials, 2017, DOI: 10.1002/adma.201606208.

[53]

Frka-Petesic B, Guidetti G, Kamita G, Vignolini S. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. Advanced Materials, 2017, DOI:10.1002/adma.201701469.

[54]

Zhong Y, Wang Z. One-Dimensional Chiral Photonic Band Gap Structure Analyzed by Non-Symmetric TransmissionLine Method. Optics Communications, 2004, 237, 229-233.

[55]

Thiel M, Hermatschweiler M, Wegener M. Thin-film polarizer based on a One Dimensional-Three DimensionalOne Dimensional Photonic Crystal Heterostructure. Applied Physics Letters, 2007, DOI: 10.1063/1.2789662.

[56]

Yablonovitch E. Photonic Band-Gap Structures. Journal of the Optical Society America B, 1993, 10(2), 283-295.

[57]

Sharma V, Crne M, Park J O, Srinivasarao M. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science, 2009, 325(5939), 449-451.

[58]

Winter B, Butz B, Dieker C, Schröder-Turk G, Mecke K, Spiecker E. Coexistence of Both Gyroid Chiralities in Individual Butterfly Wing Scales of Callophrys Rubi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(42), 12911-12916.

[59]

Pagès S, Lagugné-Labarthet F, Buffeteau T, Sourisseau C. Photoinduced Linear and/or Circular Birefringences from Light Propagation through Amorphous or Smectic Azopolymer Films. Applied Physics B: Lasers and Optics, 2002, 75, 541-548.

[60]

Wilks R, Hughes N, Hicken R. Investigation of Transient Linear and Circular Birefringence in Metallic Thin Films. Journal of Physics: Condensed Matter, 2003, 15(29), 5129-5143.

[61]

Han J, Yang D, Jin X, Jiang Y, Liu M, Duan P. Enhanced Circularly Polarized Luminescence in Emissive Charge-Transfer Complexes. Angewandte Chemie International Edition, 2019, 58(21), 7013-7019.

[62]

Naito M, Iwahori K, Miura A, Yamane M, Yamashita I. Circularly Polarized Luminescent CdS Quantum Dots Prepared in a Protein Nanocage. Angewandte Chemie International Edition, 2010, 49(39), 7006-7009.

[63]

Petoud S, Muller G, Moore E G, Xu J, Sokolnicki J, Riehl J, Le U, Cohen S, Raymond K. Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence. Journal of the American Chemical Society, 2007, 129(1), 77-83.

[64]

Carr R, Evans N H, Parker D. Lanthanide Complexes as Chiral Probes Exploiting Circularly Polarized Luminescence. Chemical Society Reviews, 2012, 41(23), 7673-7686.

[65]

Kreidt E, Arrico L, Zinna F, Bari L, Seitz M. Circularly Polarised Luminescence in Enantiopure Samarium and Europium Cryptates. Chemistry-A European Journal, 2018, 24(51), 13556-13564.

[66]

Staszak K, Wieszczycka K, Marturano V, Tylkowski B. Lanthanides Complexes-Chiral Sensing of Biomolecules. Coordination Chemistry Reviews, 2019, 397(15), 76-90.

[67]

Coughlin F, Westrol M, Oyler K, Byrne N, Kraml C, Zysman-Colman E, Lowry M, Bernhard S. Synthesis, Separation, and Circularly Polarized Luminescence Studies of Enantiomers of Iridium(Ⅲ) Luminophores. Inorganic Chemistry, 2008, 47(6), 2039-2048.

[68]

Field J, Muller G, Riehl J, Venkataraman D. Circularly Polarized Luminescence from Bridged Triarylamine Helicenes. Journal of the American Chemical Society, 2003, 125(39), 11808-11809.

[69]

Phillips K, Katz T, Jockusch S, Lovinger A, Turro N. Synthesis and Properties of an Aggregating Heterocyclic Helicene. Journal of the American Chemical Society, 2001, 123(48), 11899-11907.

[70]

Tsumatori H, Nakashima T, Kawai T. Observation of Chiral Aggregate Growth of Perylene Derivative in Opaque Solution by Circularly Polarized Luminescence. Organic Letters, 2010, 12(10), 2362-2365.

[71]

Guerrero-Martínez A, Alonso-Gómez J, Auguié B, Cidb M, Liz-Marzána L. From Individual to Collective Chirality in Metal Nanoparticles. Nano Today, 2011, 6(4), 381-400.

[72]

Wang P P, Yu S J, Ouyang M. Assembled Suprastructures of Inorganic Chiral Nanocrystals and Hierarchical Chirality. Journal of the American Chemical Society, 2017, 139(17), 6070-6073.

[73]

Jana S, Frutos M, Davidson P, Abécassis B. LigandInduced Twisting of Nanoplatelets and Their SelfAssembly into Chiral Ribbons. Science Advances, 2017, DOI: 10.1126/sciadv.1701483.

[74]

Nakagawa M, Kawai T. Chirality-Controlled Syntheses of Double-Helical Au Nanowires. Journal of the American Chemical Society, 2018, 140(15), 4991-4994.

[75]

Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Högele A, Simmel F, Govorov A, Liedl T. DNA-Based SelfAssembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature, 2012, 483(7389), 311-314.

[76]

Golla M, Albert S K, Atchimnaidu S, Perumal D, Krishnan N, Varghese R. DNA-Decorated, Helically Twisted Nanoribbons: A Scaffold for the Fabrication of OneDimensional, Chiral, Plasmonic Nanostructures. Angewandte Chemie International Edition, 2019, 58(12), 3865-3869.

[77]

Kneer L, Roller E, Besteiro L, Schreiber R, Govorov A, Liedl T. Circular Dichroism of Chiral Molecules in DNAAssembled Plasmonic Hotspots. ACS Nano, 2018, 12(9), 9110-9115.

[78]

Cheng Z, Ma Y, Yang L, Cheng F, Huang Z, Natan A, Li H, Chen Y, Cao D, Huang Z, et al. Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals. Advanced Optical Materials, 2019, DOI: 10.1002/adom.201801816.

[79]

Liu Q, Campbell M, Evans J, Smalyukh I. Orientationally Ordered Colloidal Co-Dispersions of Gold Nanorods and Cellulose Nanocrystals. Advanced Materials, 2014, 26(42), 7178-7184.

[80]

Querejeta-Fernandez A, Chauve G, Methot M, Bouchard J, Kumacheva E. Chiral Plasmonic Films Formed by Gold Nanorods and Cellulose Nanocrystals. Journal of the American Chemical Society, 2014, 136(12), 4788-4793.

[81]

Qi H, Shopsowitz K, Hamad W, MacLachlan M. Chiral Nematic Assemblies of Silver Nanoparticles in Mesoporous Silica Thin Films. Journal of the American Chemical Society, 2011, 133(11), 3728-3731.

[82]

Querejeta-Fernández A, Kopera B, Prado K, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy A, Kumacheva E. Circular Dichroism of Chiral Nematic Films of Cellulose Nanocrystals Loaded with Plasmonic Nanoparticles. ACS Nano, 2015, 9(10), 10377-10385.

[83]

Decker M, Klein M W, Wegener M, Linden S. Circular Dichroism of Planar Chiral Magnetic Metamaterials. Optical Letters, 2007, 32(7), 856-858.

[84]

Papakostas A, Potts A, Bagnall D, Prosvirnin S, Coles H, Zheludev N. Optical Manifestations of Planar Chirality. Physical Review Letters, 2003, DOI: 10.1103/physrevlett.90.107404.

[85]

Canfield B, Kujala S, Kauranen M. Remarkable Polarization Sensitivity of Gold Nanoparticle Arrays. Applied Physics Letters, 2005, DOI: 10.1063/1.1924886.

[86]

Eftekhari F, Davis T. Strong Chiral Optical Response from Planar Arrays of Subwavelength Metallic Structures Supporting Surface Plasmon Resonances. Physical Review B, 2012, DOI: 10.1103/PhysRevB.86.075428.

[87]

Kaushik M, Basu K, Benoit C, Cirtiu C, Vali H, Moores A. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. Journal of the American Chemical Society, 2015, 137(19), 6124-6127.

[88]

Chekini M, Prince E, Zhao L, Mundoor H, Smalyukh I, Kumacheva E. Chiral Carbon Dots Synthesized on Cellulose Nanocrystals. Advanced Optical Materials, 2019, DOI:10.1002/adom.201901911.

[89]

Majoinen J, Haataja J S, Appelhans D, Lederer A, Olszewska A, Seitsonen J, Aseyev V, Kontturi E, Rosilo H, Osterberg, Monika H, et al. Supracolloidal Multivalent Interactions and Wrapping of Dendronized Glycopolymers on Native Cellulose Nanocrystals. Journal of the American Chemical Society, 2014, 136(3), 866-869.

[90]

Qu D, Zhang J, Chu G, Jiang H, Wu C, Xu Y. Chiral Fluorescent Films of Gold Nanoclusters and Photonic Cellulose with Modulated Fluorescence Emission. Journal of Materials Chemistry C, 2016, 4(9), 1764-1768.

[91]

Nguyen T, Hamad W, MacLachlan M. CdS Quantum Dots Encapsulated in Chiral Nematic Mesoporous Silica: New Iridescent and Luminescent Materials. Advanced Functional Materials, 2014, 24(6), 777-783.

[92]

Lukach A, Therien-Aubin H, Querejeta-Fernandez A, Pitch N, Chauve G, Méthot M, Bouchard J, Kumacheva E. Coassembly of Gold Nanoparticles and Cellulose Nanocrystals in Composite Films. Langmuir, 2015, 31(18), 5033-5041.

[93]

Chu G, Wang X, Chen T, Gao J, Gai F, Wang Y, Xu Y. Optically Tunable Chiral Plasmonic Guest-Host Cellulose Films Weaved with Long-Range Ordered Silver Nanowires. ACS Applied Materials & Interfaces, 2015, 7 (22), 11863-11870.

[94]

Wan H, Li X, Zhang L, Li X, Liu P, Jiang Z, Yu Z. Rapidly Responsive and Flexible Chiral Nematic Cellulose Nanocrystal Composites as Multifunctional Rewritable Photonic Papers with Eco-Friendly Inks. ACS Applied Materials & Interfaces, 2018, 10(6), 5918-5925.

[95]

Boott C, Tran A, Hamad W, MacLachlan M. Cellulose Nanocrystal Elastomers with Reversible Visible Color. Angewandte Chemie International Edition, 2020, 59(1), 226-231.

[96]

Chen J, Xu L, Lin X, Chen R, Yu D, Hong W, Zheng Z, Chen X. Self-Healing Responsive Chiral Photonic Films for Sensing and Encoding. Journal of Materials Chemistry C, 2018, 6(29), 7767-7775.

[97]

Shopsowitz K, Qi H, Hamad W, Maclachlan M. FreeStanding Mesoporous Silica Films with Tunable Chiral Nematic Structures. Nature, 2010, 468(7322), 422-425.

[98]

Chu G, Wang X, Chen T, Xu W, Wang Y, Song H, Xu Y. Chiral Electronic Transitions of YVO4: Eu3+ Nanoparticles in Cellulose Based Photonic Materials with Circularly Polarized Excitation. Journal of Materials Chemistry C, 2015, 3(14), 3384-3390.

[99]

Bovero E, Van V, Frank C. Wavelength Redistribution and Color Purification Action of a Photonic Crystal. Journal of the American Chemical Society, 2008, 130, 15374-15380.

[100]

Jiang H, Zhou D, Qu D, Chu G, Xu W, Song H, Xu Y. Self-Organized Helical Superstructure of Photonic Cellulose Loaded with Upconversion Nanoparticles Showing Modulated Luminescence. RSC Advances, 2016, 6(80), 76231-76236.

[101]

Chu G, Wang X, Yin H, Shi Y, Jiang H, Chen T, Gao J, Qu D, Xu Y, Ding D. Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on SelfAssembled Cellulose Nanorods and Gold Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7(39), 21797-21806.

[102]

Chu G, Yin H, Jiang H, Qu D, Shi Y, Ding D, Xu Y. Ultrafast Optical Modulation of Rationally Engineered Photonic-Plasmonic Coupling in Self-Assembled Nanocrystalline Cellulose/Silver Hybrid Material. The Journal of Physical Chemistry C, 2016, 120(48), 27541-27547.

[103]

Mehr S H, Giese M, Qi H, Shopsowitz K, Hamad W, MacLachaln M. Novel PPV/Mesoporous Organosilica Composites: Influence of the Host Chirality on a Conjugated Polymer Guest. Langmuir, 2013, 29(40), 12579-12584.

[104]

Kose O, Boott C, Hamad W, MacLachlan M. StimuliResponsive Anisotropic Materials Based on Unidirectional Organization of Cellulose Nanocrystals in an Elastomer. Macromolecules, 2019, 52(14), 5317-5324.

[105]

Liu P, Guo X, Nan F, Duan Y, Zhang J. Modifying Mechanical, Optical Properties and Thermal Processability of Iridescent Cellulose Nanocrystal Films Using Ionic Liquid. ACS Applied Materials & Interfaces, 2017, 9(3), 3085-3092.

[106]

Tatsumi M, Teramoto Y, Nishio Y. Polymer Composites Reinforced by Locking-in a Liquid-Crystalline Assembly of Cellulose Nanocrystallites. Biomacromolecules, 2012, 13(5), 1584-1591.

[107]

Kelly J, Shukaliak A, Cheung C, Shopsowitz K, Hamad W, MacLachlan M. Responsive Photonic Hydrogels Based on Nanocrystalline Cellulose. Angewandte Chemie International Edition, 2013, 52(34), 8912-8916.

[108]

Kose O, Tran A, Lewis L, Hamad W, MacLachlan M. Unwinding a Spiral of Cellulose Nanocrystals for StimuliResponsive Stretchable Optics. Nature Communications, 2019, DOI:10.1038/s41467-019-08351-6.

[109]

Shopsowitz K, Stahl A, Hamad W, MacLachlan M. Hard Templating of Nanocrystalline Titanium Dioxide with Chiral Nematic Ordering. Angewandte Chemie International Edition, 2012, 51(28), 6886-6890.

[110]

Shopsowitz K, Hamad W, MacLachlan M. Chiral Nematic Mesoporous Carbon Derived from Nanocrystalline Cellulose. Angewandte Chemie International Edition, 2011, 50(46), 10991-10995.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 April 2020
Accepted: 14 May 2020
Published: 15 July 2020
Issue date: July 2020

Copyright

© 2020 Paper and Biomaterials

Acknowledgements

The authors are grateful for the financial support from NNSF China (grant nos. 21975095, 21671079, and 21373100), 111 project (grant no. B17020), JLU international co-advisorship program (grant no. 419020201362), JLU international collaboration program (grant no. 45119031C015) and the State key laboratory of inorganic synthesis and preparative chemistry of JLU (grant no. 1G3194101461).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return