Journal Home > Volume 8 , Issue 4
Background

The ecological indicators are useful tools to determine the effects of human disturbances on woodland biodiversity. Nevertheless, ecological indicators not always responded in the same way to disturbances, and the responses can differ among taxa. In arid and semiarid woodlands, the use of deadwood associated with cattle raising can affect biodiversity and Nature's contributions to people.

Methods

Our study aimed to assess changes in taxonomic and functional diversity of two assemblages, plants and mammals, in Prosopis woodlands under different land management types: grazed woodlands and a protected area. For plants, changes in structural diversity were also analyzed. Prosopis trees under different land management types were selected and their deadwood characteristics were registered. Through live traps and camera traps, we obtained data on the presence-absence of mammals per tree to estimate diversity indices. For plants, we measured the abundance of vegetation by species and by cover type through the Line-Intercept Method to estimated diversity. Finally, we built generalized linear models to assess the responses of diversity of each assemblage to covariables concerning deadwood and different land management types.

Results

We found that all diversity indeces for plants were either negatively affected by the presence of deadwood on the ground, or favored by its extraction. For mammals, removal of deadwood increased taxonomic diversity, while functional diversity increased with deadwood on the trees. Both structural diversity of plants and functional diversity of mammals were greater in grazed woodlands.

Conclusions

The sustainable use of woodland resources is essential for the activities of rural communities. Our study results indicated that land management of grazed woodlands promoted the structural diversity of plant assemblages and the functional diversity of mammals. The presence of deadwood negatively affected plant diversity but it increased mammal functional diversity. It is advisable to maintain trees that preserve their wooden structure within the managed areas to promote the functional diversity of mammals, while trees with extraction from standing wood will favor the functional diversity of the plant assemblage. Understanding the effects of human disturbances can contribute to management for the conservation of woodlands diversity and Nature's contributions to people.


menu
Abstract
Full text
Outline
About this article

Diversity of plants and mammals as indicators of the effects of land management types in woodlands

Show Author's information Carolina R. Szymañski1,2 ( )Solana Tabeni3Juan A. Alvarez1,2Claudia M. Campos3
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5000 Mendoza, Argentina
Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown s/n, Chacras de Coria, 5505 Mendoza, Argentina
Instituto Argentino de Investigaciones de las Zona Áridas (UNCuyo-Gobierno de Mendoza-CONICET), CCT CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5000 Mendoza, Argentina

Abstract

Background

The ecological indicators are useful tools to determine the effects of human disturbances on woodland biodiversity. Nevertheless, ecological indicators not always responded in the same way to disturbances, and the responses can differ among taxa. In arid and semiarid woodlands, the use of deadwood associated with cattle raising can affect biodiversity and Nature's contributions to people.

Methods

Our study aimed to assess changes in taxonomic and functional diversity of two assemblages, plants and mammals, in Prosopis woodlands under different land management types: grazed woodlands and a protected area. For plants, changes in structural diversity were also analyzed. Prosopis trees under different land management types were selected and their deadwood characteristics were registered. Through live traps and camera traps, we obtained data on the presence-absence of mammals per tree to estimate diversity indices. For plants, we measured the abundance of vegetation by species and by cover type through the Line-Intercept Method to estimated diversity. Finally, we built generalized linear models to assess the responses of diversity of each assemblage to covariables concerning deadwood and different land management types.

Results

We found that all diversity indeces for plants were either negatively affected by the presence of deadwood on the ground, or favored by its extraction. For mammals, removal of deadwood increased taxonomic diversity, while functional diversity increased with deadwood on the trees. Both structural diversity of plants and functional diversity of mammals were greater in grazed woodlands.

Conclusions

The sustainable use of woodland resources is essential for the activities of rural communities. Our study results indicated that land management of grazed woodlands promoted the structural diversity of plant assemblages and the functional diversity of mammals. The presence of deadwood negatively affected plant diversity but it increased mammal functional diversity. It is advisable to maintain trees that preserve their wooden structure within the managed areas to promote the functional diversity of mammals, while trees with extraction from standing wood will favor the functional diversity of the plant assemblage. Understanding the effects of human disturbances can contribute to management for the conservation of woodlands diversity and Nature's contributions to people.

Keywords: Functional traits, Taxonomic diversity, Central Monte, Cattle raising, Deadwood extraction

References(89)

Abraham EM, Prieto MR (1999) Vitivinicultura y desertificación en Mendoza. In: García Martínez B (ed) Estudios de historia y ambiente en América: Argentina, Bolivia, México, Paraguay, Instituto Panamericano de Geografía e Historia (IPGH). Colegio de México, México, p 109

Alvarez JA, Villagra PE (2009) Prosopis flexuosa DC. (Fabaceae, Mimosoideae). Kurtziana 35(1): 49-63

Alvarez JA, Villagra PE, Villalba R, Cony MA, Alberto M (2011) Wood productivity of Prosopis flexuosa D.C. woodlands in the Central Monte: influence of population structure and tree-growth habit. J Arid Environ 7(1): 7-13. https://doi.org/10.1016/j.jaridenv.2010.09.003

Barbieri MM, Berger JO (2004) Optimal predictive model selection. Ann Stat 32(3): 870-897. https://doi.org/10.1214/009053604000000238

Barton K (2015) Package 'MuMin'. Version 1(18): 439. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. Accessed 15 June 2021
Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Green P (2018) Package 'lme4'. Version 1(17): 437 https://cran.r-project.org/web/packages/lme4/index.html. Accessed 15 June 2021

Botta-Dukát Z (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16(5): 533-540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x

Braun JK, Mares MA, Ojeda RA (2000) A new species of grass mouse, genus Akodon (Muridae: Sigmodontinae), from Mendoza province, Argentina. Z Säugetierkd 65(4): 216-225

Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33(2): 261-304. https://doi.org/10.1177/0049124104268644

Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model election and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1): 23-35. https://doi.org/10.1007/s00265-010-1029-6

Campos CM, Campos VE, Giannoni SM, Rodríguez D, Albanese S, Cona MI (2017) Role of small rodents in the seed dispersal process: Microcavia australis consuming Prosopis flexuosa fruits. Austral Ecol 42(1): 113-119. https://doi.org/10.1111/aec.12406

Campos CM, Campos VE, Miguel F, Cona MI (2016) Management of protected areas and its effect on an ecosystem function: removal of Prosopis flexuosa seeds by mammals in Argentinian drylands. PLoS One 11(9): e0162551. https://doi.org/10.1371/journal.pone.0162551

Campos CM, Ojeda RA (1997) Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. J Arid Environ 35(4): 707-714. https://doi.org/10.1006/jare.1996.0196

Campos CM, Ojeda RA, Monge S, Dacar M (2001) Utilization of food resources by small and medium-sized mammals in the Monte Desert biome, Argentina. Austral Ecol 26(2): 142-149. https://doi.org/10.1046/j.1442-9993.2001.01098.x

Campos CM, Velez S (2015) Almacenadores y frugívoros oportunistas: el papel de los mamíferos en la dispersión del Algarrobo (Prosopis flexuosa DC) en el desierto del Monte, Argentina. Ecosistemas 24(3): 28-34. https://doi.org/10.7818/ECOS.2015.24-3.05

Campos VE, Cappa FM, Gatica G, Campos CM (2020) Drivers of plant species richness and structure in dry woodland of Prosopis flexuosa. Acta Oecol 109: 103654

Carmona CP, Azcárate FM, de Bello F, Ollero HS, Lepš J, Peco B (2012) Taxonomical and functional diversity turnover in mediterranean grasslands: interactions between grazing, habitat type and rainfall. J Appl Ecol 49(5): 1084-1093. https://doi.org/10.1111/j.1365-2664.2012.02193.x

Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4): 265-270

Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783-791

Chillo V, Ojeda RA (2012) Mammal functional diversity loss under human-induced disturbances in arid lands. J Arid Environ 87: 95-102. https://doi.org/10.1016/j.jaridenv.2012.06.016

Chillo V, Ojeda RA (2014) Disentangling ecosystem responses to livestock grazing in drylands. Agric Ecosyst Environ 197: 271-277. https://doi.org/10.1016/j.agee.2014.08.011

Chillo V, Ojeda RA, Capmourteres V, Anand M (2017) Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. J Appl Ecol 54(3): 986-996. https://doi.org/10.1111/1365-2664.12775

Cingolani AM, Noy-Meir I, Díaz S (2005) Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol Appl 15(2): 757-773. https://doi.org/10.1890/03-5272

Colwell RK, Elsensohn JE (2014) EstimateS turns 20: statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37(6): 609-613

Corbalán V (2006) Microhabitat selection by murid rodents in the Monte Desert of Argentina. J Arid Environ 65(1): 102-110

Corbalán V, Ojeda RA (2004) Spatial and temporal organisation of small mammal communities in the Monte Desert, Argentina. Mammalia 68(1): 5-14. https://doi.org/10.1515/mamm.2004.001

Cummings J, Smith D (2000) The line-intercept method: a tool for introductory plant ecology laboratories. In: Karcher SJ (ed) Tested studies for laboratory teaching, vol 22, pp 234-246

Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11): 646-655. https://doi.org/10.1016/S0169-5347(01)02283-2

Díaz S, Lavorel S, De Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. PNAS 104(52): 20684-20689. https://doi.org/10.1073/pnas.0704716104

Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnár Z, Hill R, Chan KMA, Baste IA, Brauman KA, Polasky S, Church A, Lonsdale M, Larigauderie A, Leadley PW, Van Oudenhoven APE, Van Der Plaat F, Schröter M, Lavorel S, Aumeeruddy-Thomas Y, Bukvareva E, Davies K, Demissew S, Erpul G, Failler P, Guerra CA, Hewitt CL, Keune H, Lindley S, Shirayama Y (2018) Assessing nature's contributions to people: recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359(6373): 270-272. https://doi.org/10.1126/science.aap8826

Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman K, Butchart S, Chan K, Garibaldi L, Ichii K, Liu J, Subrmanian S, Midgley G, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Jona R, Reyers B, Chowdhury R, Shin Y, Visseren-Hamakers I, Wilis K, Zayas C (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Intergovernmental science-policy platform on biodiversity and ecosystem services, Bonn

Ehlers Smith YC, Ehlers Smith DA, Ramesh T, Downs CT (2020) Landscape-scale drivers of mammalian species richness and functional diversity in forest patches within a mixed land-use mosaic. Ecol Indic 113: 106176. https://doi.org/10.1016/j.ecolind.2020.106176

Feld CK, Martins Da Silva P, Sousa JP, De Bello F, Bugter R, Grandin U, Hering D, Lavorel S, Mountford O, Pardo I, Pärtel M, Römbke J, Sandin L, Jones KB, Harrison P (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118(12): 1862-1871. https://doi.org/10.1111/j.1600-0706.2009.17860.x

Giannoni SM, Campos VE, Andino N, Ramos-Castilla M, Orofino A, Borghi CE, De Los RC, Campos CM (2013) Hoarding patterns of sigmodontine rodent species in the Central Monte Desert (Argentina). Austral Ecol 38: 485-492

Giannoni SM, Dacar M, Taraborelli P, Borghi CE (2001) Seed hoarding by rodents of the Monte Desert, Argentina. Austral Ecol 26(3): 259-263. https://doi.org/10.1046/j.1442-9993.2001.01112.x

Guevara JC, Grünwaldt EG, Estevez OR, Bisigato AJ, Blanco LJ, Biurrun FN, Ferrando CA, Chirino CC, Morici E, Fernández B, Allegretti LI, Passera CB (2009) Range and livestock production in the Monte Desert, Argentina. J Arid Environ 73: 228-237. https://doi.org/10.1016/j.jaridenv.2008.02.001

Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 34: 59-234

Hevia V, Carmona CP, Azcárate FM, Torralba M, Alcorlo P, Ariño R, Lozano J, Castro-Cobo S, González JA (2016) Effects of land use on taxonomic and functional diversity: a cross-taxon analysis in a Mediterranean landscape. Oecologia 181(4): 959-970. https://doi.org/10.1007/s00442-015-3512-2

Janeček Š, de Bello F, Horník J, Bartoš M, Černý T, Doležal J, Dvorský M, Fajmonet K, Janečková P, Jiráská Š, Mudrák O, Klimešová J (2013) Effects of land-use changes on plant functional and taxonomic diversity along a productivity gradient in wet meadows. J Veg Sci 24(5): 898–909. https://doi.org/10.1111/jvs.12012

Kindt R, Kindt MR (2015) Package 'BiodiversityR'. https://CRAN.R-project.org/package=BiodiversityR. Accessed 15 June 2021
Kingsolver JM, Johnson CD, Swier SR, Teran A (1977) Prosopis fruits as a resource for invertebrates. In: Simpson BB (ed) Mesquite: its biology in two desert ecosystems. Dowden, Hutchinson and Ross Inc, Pennsylvania, pp 108-122

Labraga JC, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73(2): 154-163. https://doi.org/10.1016/j.jaridenv.2008.03.016

Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1): 299-305

Laliberté E, Legendre P, Shipley B (2014) Package 'FD'. Measuring functional diversity from multiple traits, and other tools for functional ecology http://www.elaliberte.info. Accessed 15 June 2021

Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11(5): 1027-1039. https://doi.org/10.1016/j.ecolind.2011.02.004

Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the holy grail. Funct Ecol 16(5): 545-556. https://doi.org/10.1046/j.1365-2435.2002.00664.x

Leps J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78(4): 481-501

Lettink M, Armstrong DP (2003) An introduction to using mark-recapture analysis for monitoring threatened species. Depart Conserv Techn Ser A 28: 5-32

López-Sánchez A, San Miguel A, López-Carrasco C, Huntsinger L, Roig S (2016) The important role of scattered trees on the herbaceous diversity of a grazed Mediterranean dehesa. Acta Oecol 76: 31-38. https://doi.org/10.1016/j.actao.2016.08.003

Mac Nally R, Parkinson A, Horrocks G, Conole L, Tzaros C (2001) Relationships between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on south-eastern Australian floodplains. Biol Conserv 99(2): 191-205

Magurran AE (2004) Measuring biological diversity. Blackwell Publishers Ltd, Oxford

Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures - implications for conservation. Biol Conserv 132(3): 311-321. https://doi.org/10.1016/j.biocon.2006.04.023

Mares MA, Enders FA, Kingsolver JM, Neff JL, Simpson BB (1977) Prosopis as a niche component. In: Simpson BB (ed) Mesquite: its biology in two desert ecosystems. Dowden, Hutchinson and Ross Inc, Pennsylvania, pp 123-149

Martorell C, Peters EM (2005) The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biol Conserv 124(2): 199-207. https://doi.org/10.1016/j.biocon.2005.01.025

Mason NW, Mouillot D (2013) Functional diversity measures. Encyclopedia Biodivers (2nd edn) 3: 597-608. https://doi.org/10.1016/B978-0-12-384719-5.00356-7

Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19(4): 423-431. https://doi.org/10.1111/j.1466-8238.2010.00532.x

Miguel MF, Tabeni S, Cona MI, Campos CM (2018) Secondary seed dispersal by mammals between protected and grazed semiarid woodland. Forest Ecol Manag 422: 41-48

Moreno MC, Torres L, Campos CM (2018) Nuevos aportes al uso de Prosopis flexuosa en el Centro oeste deArgentina y su interpretación en el Marco general de la Ecorregión del Monte. Etnobiología 16(3): 18-35

Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24: 867-876

Ojeda RA (1989) Small-mammal responses to fire in the Monte Desert, Argentina. J Mammal 70(2): 416-420. https://doi.org/10.2307/1381531

Ojeda RA, Tabeni S (2009) The mammals of the Monte Desert revisited. J Arid Environ 73(2): 173-181. https://doi.org/10.1016/j.jaridenv.2007.09.008

Ojeda RA, Tabeni S, Corbalán V (2011) Mammals of the Monte Desert: from regional to local assemblages. J Mammal 92(6): 1236-1244. https://doi.org/10.1644/10-mamm-s-352.1

Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6): 741-758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

Pla L, Casanoves F, Di Rienzo JA (2012) Functional groups. Quantifying functional biodiversity. Springer, Dordrecht, pp 9-25. https://doi.org/10.1007/978-94-007-2648-2
DOI
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.r-project.org. Accessed 15 June 2021

Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species - 2013 update of the global database. Divers Distrib 19: 1093-1094

Rossi BE (2004) Flora y vegetación de la Reserva de Biosfera de Nacuñán después de 25 años de clausuraHeterogeneidad espacial a distintas escalas. Tesis Doctoral, Universidad Nacional de Cuyo, Mendoza, p 155

Rossi BE, Villagra PE (2003) Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. J Veg Sci 14(4): 543-550. https://doi.org/10.1111/j.1654-1103.2003.tb02181.x

Salgado-Luarte C, Escobedo VM, Stotz GC, Rios RS, Arancio G, Gianoli E (2019) Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degrad Dev 30(2): 178-189. https://doi.org/10.1002/ldr.3208

Schielzeth H, Nakagawa S (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2): 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

Shackleton RT, Le Maitre DC, van Wilgen BW, Richardson DM (2015) Use of non-timber forest products from invasive alien Prosopis species (mesquite) and native trees in South Africa: implications for management. Forest Ecosyst 2: 16. https://doi.org/10.1186/s40663-015-0040-9

Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92(1): 235-253

Stoklosa AM, Ulyshen MD, Fan Z, Varner M, Seibold S, Müller J (2016) Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl Ecol 17(5): 463-470. https://doi.org/10.1016/j.baae.2016.03.001

Sukma HT, Di Stefano J, Swan M, Sitters H (2019) Mammal functional diversity increases with vegetation structural complexity in two forest types. Forest Ecol Manag 433: 85-92. https://doi.org/10.1016/j.foreco.2018.10.035

Sullivan TP, Sullivan DS, Sullivan JH (2017) Mammalian responses to windrows of woody debris on clear-cuts: abundance and diversity of forest-floor small mammals and presence of small mustelids. Forest Ecol Manag 399: 143-154. https://doi.org/10.1016/j.foreco.2017.05.028

Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav Ecol Sociobiol 65: 13-21. https://doi.org/10.1007/s00265-010-1037-6

Szymañski CR, Alvarez JA, Campos CM, Tabeni S (2020) A first assessment of the land management effect on the ecological role of large trees as habitat refuges for desert small mammals. Basic Appl Ecol 48: 136-145. https://doi.org/10.1016/j.baae.2020.09.005

Tabeni S, Ojeda RA (2003) Assessing mammal responses to perturbations in temperate aridlands of Argentina. J Arid Environ 55(4): 715-726. https://doi.org/10.1016/S0140-1963(02)00314-2

Tabeni S, Ojeda RA (2005) Ecology of the Monte Desert small mammals in disturbed and undisturbed habitats. J Arid Environ 63(1): 244-255. https://doi.org/10.1016/j.jaridenv.2005.03.009

Taraborelli P, Corbalán V, Giannoni S (2003) Locomotion and escape modes in rodents of the Monte Desert (Argentina). Ethology 109(6): 475-485. https://doi.org/10.1046/j.1439-0310.2003.00884.x

Tognelli M, Campos CM, Ojeda RA, Roig V (1995) Is Microcavia australis (Rodentia: Caviidae) associated with a particular plant structure in the Monte desert of Argentina? Mammalia 59: 327-333

Tognelli MF, Campos CM, Ojeda RA (2001) Microcavia australis. Mamm Species 648: 1-4

DOI

van Wilgen BW, Richardson DM (2014) Challenges and trade-offs in the management of invasive alien trees. Biol Invasions 16: 721-734

Vázquez DP, Alvarez JA, Debandi G, Aranibar JN, Villagra PE (2011) Ecological consequences of deadwood extraction in an arid ecosystem. Basic Appl Ecol 12(8): 722-732. https://doi.org/10.1016/j.baae.2011.08.009

Villagra PE, Alvarez JA (2019) Determinantes ambientales y desafíos Para el ordenamiento forestal sustentable en los algarrobales del Monte, Argentina. Ecol Austral 29(1): 146-155. https://doi.org/10.25260/ea.19.29.1.0.752

Villagra PE, Cony MA, Mantován NG, Rossi BE, Loyarte González M, Villalba R (2004) Ecología y manejo de los algarrobales de la provincia fitogeográfica del Monte. In: Arturi MF, Frangi JL, Goya JF (eds) Ecología y Manejo de Bosques Nativos de Argentina. Editorial Universidad Nacional de La Plata, Buenos Aires

Villagra PE, Giordano C, Alvarez JA, Cavagnaro JB, Guevara A, Sartor C, Passera CB, Greco S (2011) Ser planta en el desierto: estrategias de uso de agua y Resistencia al estrés hídrico en el Monte central de Argentina. Ecol Austral 21(1): 29-42

Villéger S, Mason WH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8): 2290-2301. https://doi.org/10.1890/07-1206.1

Zeileis A, Cribari-Neto F, Gruen B, Kosmidis I, Simas AB, Rocha AV, Zeileis MA (2016) Package 'betareg'. R package 3.2. https://cran.r-project.org/web/packages/betareg/betareg.pdf. Accessed 15 June 2021
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 June 2021
Accepted: 17 September 2021
Published: 23 November 2021
Issue date: December 2021

Copyright

© The Author(s) 2021.

Acknowledgements

We thank the staff of BÑR and the owners and families in charge of the private fields for allowing us to work there. We thank C. Moreno, S. Mendoza, N. Carlos, F. Lozano, L. Ramos and L. Sosa for help with data collection in the field. C. Pissolito assisted us in drafting the English version.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return