Journal Home > Volume 8 , Issue 3
Background

Organic carbon stored in forest soils (SOC) represents an important element of the global C cycle. It is thought that the C storage capacity of the stable pool can be enhanced by increasing forest productivity, but empirical evidence in support of this assumption from forests differing in tree species and productivity, while stocking on similar substrate, is scarce.

Methods

We determined the stocks of SOC and macro-nutrients (nitrogen, phosphorus, calcium, potassium and magnesium) in nine paired European beech/Scots pine stands on similar Pleistocene sandy substrates across a precipitation gradient (560–820 mm∙yr− 1) in northern Germany and explored the influence of tree species, forest history, climate, and soil pH on SOC and nutrient pools.

Results

While the organic layer stored on average about 80% more C under pine than beech, the pools of SOC and total N in the total profile (organic layer plus mineral soil measured to 60 cm and extrapolated to 100 cm) were greater under pine by about 40% and 20%, respectively. This contrasts with a higher annual production of foliar litter and a much higher fine root biomass in beech stands, indicating that soil C sequestration is unrelated to the production of leaf litter and fine roots in these stands on Pleistocene sandy soils. The pools of available P and basic cations tended to be higher under beech. Neither precipitation nor temperature influenced the SOC pool, whereas tree species was a key driver. An extended data set (which included additional pine stands established more recently on former agricultural soil) revealed that, besides tree species identity, forest continuity is an important factor determining the SOC and nutrient pools of these stands.

Conclusion

We conclude that tree species identity can exert a considerable influence on the stocks of SOC and macronutrients, which may be unrelated to productivity but closely linked to species-specific forest management histories, thus masking weaker climate and soil chemistry effects on pool sizes.


menu
Abstract
Full text
Outline
About this article

Soil carbon and nutrient stocks under Scots pine plantations in comparison to European beech forests: a paired-plot study across forests with different management history and precipitation regimes

Show Author's information Marco Diers1 ( )Robert Weigel1Heike Culmsee1Christoph Leuschner1,2
Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073, Goettingen, Germany
Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Buesgenweg 1, 37077, Goettingen, Germany

Abstract

Background

Organic carbon stored in forest soils (SOC) represents an important element of the global C cycle. It is thought that the C storage capacity of the stable pool can be enhanced by increasing forest productivity, but empirical evidence in support of this assumption from forests differing in tree species and productivity, while stocking on similar substrate, is scarce.

Methods

We determined the stocks of SOC and macro-nutrients (nitrogen, phosphorus, calcium, potassium and magnesium) in nine paired European beech/Scots pine stands on similar Pleistocene sandy substrates across a precipitation gradient (560–820 mm∙yr− 1) in northern Germany and explored the influence of tree species, forest history, climate, and soil pH on SOC and nutrient pools.

Results

While the organic layer stored on average about 80% more C under pine than beech, the pools of SOC and total N in the total profile (organic layer plus mineral soil measured to 60 cm and extrapolated to 100 cm) were greater under pine by about 40% and 20%, respectively. This contrasts with a higher annual production of foliar litter and a much higher fine root biomass in beech stands, indicating that soil C sequestration is unrelated to the production of leaf litter and fine roots in these stands on Pleistocene sandy soils. The pools of available P and basic cations tended to be higher under beech. Neither precipitation nor temperature influenced the SOC pool, whereas tree species was a key driver. An extended data set (which included additional pine stands established more recently on former agricultural soil) revealed that, besides tree species identity, forest continuity is an important factor determining the SOC and nutrient pools of these stands.

Conclusion

We conclude that tree species identity can exert a considerable influence on the stocks of SOC and macronutrients, which may be unrelated to productivity but closely linked to species-specific forest management histories, thus masking weaker climate and soil chemistry effects on pool sizes.

Keywords: Forest history, Soil organic carbon, Nitrogen, Basic cations, Fagus sylvatica , Paired plots, Pinus sylvestris , Productivity effect, Tree species effect

References(70)

Akatsuki M, Makita N (2020) Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations. Tree Physiol. doi. org/ https://doi.org/10.1093/treephys/tpaa051
DOI

Akselsson C, Olsson J, Belyazid S, Capell R (2016) Can increased weathering rates due to future warming compensate for base cation losses following whole-tree harvesting in spruce forests? Biogeochemistry 128(1-2): 89–105. https://doi.org/10.1007/s10533-016-0196-6

Ammer C, Bickel E, Kölling C (2008) Converting Norway spruce stands with beech – a rewiew of arguments and techniques. Austr J Forest Sci 125: 3–26

Anders S, Beck W, Hornschuch F, Müller J, Steiner A (2004) Vom Kiefern-Reinbestand zum Kiefern-Buchen-Mischbestand. Beitr. Forstwirtsch. u. Landsch. ökol. 38: 55-67

Angst G, Messinger J, Greiner M, Häusler W, Hertel D, Kirfel K, Leuschner C, Rethemeyer J, Mueller CW (2018) Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol Biochem 122: 19–30. https://doi.org/10.1016/j.soilbio.2018.03.026

Angst G, Mueller KE, Eissenstat DM, Trumbore S, Freeman KH, Hobbie SE, Chorover J, Oleksyn J, Reich PB, Mueller CW (2019) Soil organic carbon stability in forests: distinct effects of tree species identity and traits. Glob Change Biol 25(4): 1529–1546. https://doi.org/10.1111/gcb.14548

Arbeitskreis Standortkartierung (2016) Forstliche Standortsaufnahme, 7th edn. IHW Verlag, Eching, Germany
Berg B, McClaugherty C (2003) Plant litter. Decomposition, humus formation, carbon sequestration. Springer, Berlin

Binkley D, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42: 73–88

Binkley D, Valentine D (1991) 50-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. For Ecol Manag 40(1-2): 13–25. https://doi.org/10.1016/0378-1127(91)90088-D

BMEL (2020) Dritte Bundeswaldinventur 2012. Bundesministerium für Ernährung und Landwirtschaft, Berlin

Boča A, Van Miegroet H, Gruselle M-C (2014) Forest overstory effect on soil organic carbon storage: a meta-analysis. Soil Sci Soc Am J 78(S1): S35–S47. https://doi.org/10.2136/sssaj2013.08.0332nafsc

Bublinec E (1974) Bodenpodsolierung unter Kiefernbeständen. Nanka o Zemi VIII Pedologica, Bratislava 8: 1–22

Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8): 2314–2330. https://doi.org/10.1890/0012-9658(2000)081[2314:LTIOAO]2.0.CO;2

Core Team R (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org.

Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C.N. P content. Oecologia 94(4): 457–471. https://doi.org/10.1007/BF00566960

Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag 262(11): 2008–2023. https://doi.org/10.1016/j.foreco.2011.08.042

Fischer H, Bens O, Hüttl RF (2002) Changes in humus form, humus stock and soil organic matter distribution caused by forest transformation in the north-eastern lowlands of Germany. Forstwiss Centralbl 121(6): 322–334. https://doi.org/10.1046/j.1439-0337.2002.02037.x

Förster A, Culmsee H, Leuschner C (2021) Thinned northern German scots pine forests have a low carbon storage and uptake potential in comparison to naturally developing beech forests. For Ecol Manag 479: 118575. https://doi.org/10.1016/j.foreco.2020.118575

Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2006) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21(1): 1–11. https://doi.org/10.1007/s00468-006-0107-x

Glaser FF, Hauke U (2004) Historisch alte Waldstandorte und Hutewälder in Deutschland. Angewandte Landschaftsökologie 61: 1–193

Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Jansens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281(1-2): 15–24. https://doi.org/10.1007/s11104-005-3701-6

23
Grüneberg E, Schöning I, Riek W, Ziche D, Evers J (2019) Carbon stocks and carbon stock changes in German forest soils. In: Wellbrock N, Bolte a (eds.) status and dynamics of forests in Germany. Ecol stud 237. Springer nature, pp 167-198https://doi.org/10.1007/978-3-030-15734-0_6
DOI

Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55(1): 91–100. https://doi.org/10.1046/j.1365-2389.2003.00578.x

Harrell FE Jr, with contributions from Charls Dupont and many others (2020) Hmisc: Harrel Miscellaneous. R package version 4.4–1. https://CRAN.R-project.org/package=Hmisc. Accessed 20 Dec 2020

Heinsdorf D (2002) Einfluss der Bewirtschaftung auf den Kohlenstoffhaushalt von Forstökosystemen im nordostdeutschen Tiefland. Beitr. Forstwirtsch. u. Landsch. ökol. 36: 168-174

Hertel D (1995) Streuabbau in verschiedenen Stadien der Heide-Wald-Sukzession. Diploma thesis, University of Göttingen, Göttingen, Germany

Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karoleswki P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9): 2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2

Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D (2018) Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob Chang Biol 24(8): 3344–3356. https://doi.org/10.1111/gcb.14093

Houle D, Marty C, Augustin F, Dermont G, Gagnon C (2020) Impact of climate change on soil hydro-climatic conditions and base cation weathering rates in forested watersheds in eastern Canada. Front For Glob Change 3: 535397. https://doi.org/10.3389/ffgc.2020.535397

Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3-4): 253–268. https://doi.org/10.1016/j.geoderma.2006.09.003

32
Jenkinson DS (1988) Soil organic matter and its dynamics. In: Ward A (ed) Russel's soil conditions and plant growth, 11th edn. Longman, Harlow, pp 564–607
Kremser W (1990) Niedersächsische Forstgeschichte. In: Heimatbund Rotenburg/Wümme. Rotenburg/W, Germany
Kuusela K (1994) Forest resources in Europe 1950–1990. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511752285
DOI

Ladegaard-Pedersen P, Elberling B, Vesterdal L (2005) Soil carbon stocks, mineralization rates and CO2 effluxes under 10 tree species on contrasting soil types. Can J For Res 35(6): 1277–1284. https://doi.org/10.1139/x05-045

Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16(1): 439–453. https://doi.org/10.1111/j.1365-2486.2009.01930.x

Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220(1-3): 242–258. https://doi.org/10.1016/j.foreco.2005.08.015

38
Leuschner C (2001) Changes in forest ecosystem function with succession in the Lüneburger Heide. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape Management in Central Europe. Ecol Stud, vol 147. Springer, Berlin, Heidelberg, pp 517–568. https://doi.org/10.1007/978-3-662-04504-6_29
DOI

Leuschner C, Wulf M, Bäuchler P, Hertel D (2013) Soil C and nutrient stores under scots pine afforestations compared to ancient beech forests of the German Pleistocene: the role of tree species and forest history. For Ecol Manag 310: 405–415. https://doi.org/10.1016/j.foreco.2013.08.043

Link RM (2020) Corrmorant: flexible correlation matrices based on 'ggplot2'. R package version 0.0.0.9007. http://github.com/r-link/corrmorant. Accessed 20 Dec 2020
Lorenz K, Lal R (2010) Carbon sequestration in Forest ecosystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-90-481-3266-9
DOI

Lorenz K, Preston CM, Krumrei S, Feger K-H (2004) Decomposition of needle/leaf litter from scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur J For Res 123(3): 177–188. https://doi.org/10.1007/s10342-004-0025-7

Meier IC, Knutzen F, Eder LM, Müller-Haubold H, Goebel M, Bachmann J, Hertel D, Leuschner C (2018) The deep root system of Fagus sylvatica on sandy soil: structure and variation across a precipitation gradient. Ecosystems 21(2): 280–296. https://doi.org/10.1007/s10021-017-0148-6

44
Meyer P, Wevell von Krüger A, Steffens R, Unkrig W (2006) Naturwälder in Niedersachsen – Schutz und Forschung. Bd. 1: Tiefland. Göttingen, Nordwestdeutsche Forstliche Versuchsanstalt

Milnik A (2007) Zur Geschichte der Kiefernwirtschaft in Nordostdeutschland. Eberswalder Forstliche Schriftenreihe 32: 14–21

46
NW-FVA & NL (2019) Klimaangepasste Baumartenwahl in den niedersächsischen Landesforsten. Nordwestdeutsche Forstliche Versuchsanstalt, Niedersächsische Landesforsten. Aus dem Walde – Schriftenreihe Waldentwicklung in Niedersachsen, H 61

Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Chang Biol 24(1): 1–12. https://doi.org/10.1111/gcb.13850

Pérez-Harguindeguy N, Díaz S, Cornelissen JH, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in Central Argentina. Plant Soil 218: 21–30

Poeplau C, Don A, Six J, Kaiser M, Nieder R, Benbi D, Chenu C, Cotrufo F, Derrien D, Grand S, Gregorich E, Griepentrog M, Gunina A, Haddix M, Kuzyakov Y, Kuhnel A, Macdonald LM, Soong J, Trigalet S, Vermeire ML, Rovira P, van Wesemael B, Wiesmeier M, Yeasmin S, Yevdokimov I, Nieder R (2018) Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – a comprehensive method comparison. Soil Biol Biochem 125: 10–26. https://doi.org/10.1016/j.soilbio.2018.06.025
DOI
Polomski J, Kuhn N (1998) Wurzelsysteme. Haupt Verlag, Bern

Prescott CE, Vesterdal L (2013) Tree species effects on soils in temperate and boreal forests: emerging themes and research needs. Forest Ecold Manage 309: 1–3. https://doi.org/10.1016/j.foreco.2013.06.042

52
Price SP, Bradford MA, Ashton MS (2012) Characterizing organic carbon stocks and flows in forest soils. In: Ashton MS, Tyrell ML, Spalding D, Gentry B (eds) Managing Forest carbon in a changing climate. Springer, Dordrecht, pp 7–30. https://doi.org/10.1007/978-94-007-2232-3_2
DOI

Prietzel J (2004) Humusveränderungen nach Einbringung von Buche und Eiche in Kiefernreinbestände. J Plant Nutr Soil Sci 167(4): 428–438. https://doi.org/10.1002/jpln.200421363

Prietzel J, Stetter U, Klemmt HJ, Rehfuess KE (2006) Recent carbon and nitrogen accumulation and acidification in soils of two scots pine ecosystems in southern Germany. Plant Soil 289(1-2): 153–170. https://doi.org/10.1007/s11104-006-9120-5

Reich PB, Oleksyn J, Modrzynski J, Mirozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8(8): 811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x

Roy J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic Press, San Diegohttps://doi.org/10.1016/B978-012505290-0/50002-8
DOI
Schlesinger WH (1991) Biogeochemistry. An analysis of global change, 3rd edn. Academic Press, Waltham, USAhttps://doi.org/10.1016/B978-0-12-625157-9.50006-X
DOI
Schlesinger WH, Bernhardt ES (2013) Biogeochemistry. An analysis of global change, 1st edn. Academic Press, San Diego, USA

Schulp CJE, Nabuurs G-J, Verburg PH, de Waal RW (2008) Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manag 256(3): 482–490. https://doi.org/10.1016/j.foreco.2008.05.007

Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129(3): 407–419. https://doi.org/10.1007/s004420100740

61
Spalding D, Kendirli E, Oliver CD (2012) The role of forests in global carbon budgeting. In: Ashton MS, Tyrell ML, Spalding D, Gentry B (eds) Managing Forest Carbon in a Changing Climate. Springer, Dordrecht, pp 165–179. https://doi.org/10.1007/978-94-007-2232-3_8
DOI

Verheyen K, Bossuyt B, Hermy M, Tack G (1999) The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26(5): 1115–1128. https://doi.org/10.1046/j.1365-2699.1999.00340.x

Vesterdal L, Raulund-Rasmussen K (1998) Forest floor chemistry under seven tree species along a soil fertility gradient. Can J For Res 28(11): 1636–1647. https://doi.org/10.1139/x98-140

Vesterdal L, Ritter E, Gundersen P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manag 169(1-2): 137–147. https://doi.org/10.1016/S0378-1127(02)00304-3

Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255(1): 35–48. https://doi.org/10.1016/j.foreco.2007.08.015

Vogel C, Heister K, Buegger F, Tanuwidjaja I, Haug S, Schloter M, Kögel-Knabner I (2015) Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biol Fert Soils 51(4): 427–442. https://doi.org/10.1007/s00374-014-0987-7

von Oheimb G, Härdtle W, Naumann PS, Westphal C, Assmann T, Meyer H (2008) Long-term effects of historical heathland farming on soil properties of forest ecosystems. For Ecol Manag 155: 1984–1993

Wickham H, Averick M, Bryan J, Chang W, D'Agostino McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Milton Bache S, Müller K, Ooms J, Robinson D, Paige Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. J Open Source Softw 4(43): 1686. https://doi.org/10.21105/joss.01686

Wördehoff R, Fischer C, Spellmann H (2017a) II. Cluster- und Kohlenstoffstudie Forst und Holz Niedersachsen. Nordwestdeutsche Forstliche Versuchsanstalt, Göttingenhttps://doi.org/10.17875/gup2017-1015
DOI
Wördehoff R, Fischer C, Spellmann H (2017b) II. Cluster- und Kohlenstoffstudie Forst und Holz Schleswig-Holstein. Nordwestdeutsche Forstliche Versuchsanstalt, Göttingenhttps://doi.org/10.17875/gup2017-1015
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 December 2020
Accepted: 29 June 2021
Published: 15 July 2021
Issue date: September 2021

Copyright

© The Author(s) 2021.

Acknowledgements

Acknowledgements

This study is part of the WiNat-project, funded by the Federal Ministry for Education and Research (BMBF) (project number: 01LC1314B), the financial support of which is gratefully acknowledged. We would like to thank Mechthild Stange and Marvin Kühne for support during the field work and the technical assistants of the Department of Plant Ecology, University of Goettingen, for the laboratory analyses. We also thank Agnes Förster for helpful comments on the manuscript.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return