Journal Home > Volume 8 , Issue 3
Background

Fragmentation and deforestation are one of the greatest threats to forests, and these processes are of even more concern in the tropics, where the seasonal dry forest is possibly one of the most threatened ecosystems with the least remaining surface area.

Methods

The deforestation and fragmentation patterns that had occurred in Ecuadorian seasonal dry forests between 1990 and 2018 were verified, while geographic information systems and land cover shapes provided by the Ecuadorian Ministry of the Environment were employed to classify and evaluate three types of seasonal dry forests: deciduous, semi-deciduous, and transition. The study area was tessellated into 10 km2 hexagons, in which six fragmentation parameters were measured: number of patches, mean patch size, median patch size, total edge, edge density and reticular fragmentation index (RFI). The RFI was also measured both outside and inside protected natural areas (unprotected, national protected areas and protected forest). Moreover, the areas with the best and worst conservation status, connectivity and risk of disappearance values were identified by means of a Getis-Ord Gi* statistical analysis.

Results

The deforestation of seasonal dry forests affected 27.04% of the original surface area still remaining in 1990, with an annual deforestation rate of − 1.12% between 1990 and 2018. The RFI has increased by 11.61% as a result of the fact that small fragments of forest have tended to disappear, while the large fragments have been fragmented into smaller ones. The semi-deciduous forest had the highest levels of fragmentation in 2018. The three categories of protection had significantly different levels of fragmentation, with lower RFI values in national protected areas and greater values in protected forests.

Conclusions

The seasonal dry forest is fragmenting, deforesting and disappearing in some areas. An increased protection and conservation of the Ecuadorian seasonal dry forest is, therefore, necessary owing to the fact that not all protection measures have been effective.


menu
Abstract
Full text
Outline
About this article

Deforestation and fragmentation trends of seasonal dry tropical forest in Ecuador: impact on conservation

Show Author's information Carlos A. Rivas1,2 ( )José Guerrero-Casado3,4Rafael M. Navarro-Cerillo2
Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
Department of Forest Engineering, Laboratory of Dendrochronology, Silviculture and Global Change – DendrodatLab – ERSAF, University of Cordoba, Campus de Rabanales, Crta. IV, km. 396, E-14071, Cordoba, Spain
Departamento de Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
Department of Zoology, University of Cordoba, Campus de Rabanales, 14071, Cordoba, Spain

Abstract

Background

Fragmentation and deforestation are one of the greatest threats to forests, and these processes are of even more concern in the tropics, where the seasonal dry forest is possibly one of the most threatened ecosystems with the least remaining surface area.

Methods

The deforestation and fragmentation patterns that had occurred in Ecuadorian seasonal dry forests between 1990 and 2018 were verified, while geographic information systems and land cover shapes provided by the Ecuadorian Ministry of the Environment were employed to classify and evaluate three types of seasonal dry forests: deciduous, semi-deciduous, and transition. The study area was tessellated into 10 km2 hexagons, in which six fragmentation parameters were measured: number of patches, mean patch size, median patch size, total edge, edge density and reticular fragmentation index (RFI). The RFI was also measured both outside and inside protected natural areas (unprotected, national protected areas and protected forest). Moreover, the areas with the best and worst conservation status, connectivity and risk of disappearance values were identified by means of a Getis-Ord Gi* statistical analysis.

Results

The deforestation of seasonal dry forests affected 27.04% of the original surface area still remaining in 1990, with an annual deforestation rate of − 1.12% between 1990 and 2018. The RFI has increased by 11.61% as a result of the fact that small fragments of forest have tended to disappear, while the large fragments have been fragmented into smaller ones. The semi-deciduous forest had the highest levels of fragmentation in 2018. The three categories of protection had significantly different levels of fragmentation, with lower RFI values in national protected areas and greater values in protected forests.

Conclusions

The seasonal dry forest is fragmenting, deforesting and disappearing in some areas. An increased protection and conservation of the Ecuadorian seasonal dry forest is, therefore, necessary owing to the fact that not all protection measures have been effective.

Keywords: Protected areas, Habitat loss, Deciduous forest, Semi-deciduous forest, Remnant forest, Patch isolation

References(71)

Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. PNAS 105(42): 16089–16094. https://doi.org/10.1073/pnas.0800437105

Armenteras D, Espelta JM, Rodríguez N, Retana J (2017) Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob Environ Chang 46: 139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002

Asbjornsen H, Ashton MS, Vogt DJ, Palacios S (2004) Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agric Ecosyst Environ 103(3): 481–495. https://doi.org/10.1016/j.agee.2003.11.008

Barber CP, Cochrane MA, Souza CM, Laurance WF (2014) Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol Conserv 177: 203–209. https://doi.org/10.1016/j.biocon.2014.07.004

Biodiversity Indicators Partnership (2011) Guidance for national biodiversity indicator development and use. UNEP World Conservation Monitoring Centre, Cambridge, p 40

Birch CPD, Oom SP, Beecham JA (2007) Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol Model 206(3-4): 347–359. https://doi.org/10.1016/j.ecolmodel.2007.03.041

Bird Life International (2019) BirdLife data zone. http://datazone.birdlife.org/eba/factsheet/47. Accessed 16 Nov 2019.

Briceño J, Iniguez-Gallardo V, Ravera F (2016) Factores que influyen en la apreciación de servicios de los ecosistemas de los bosques secos del sur del Ecuador. Rev Ecosistemas 25(2): 46–58. https://doi.org/10.7818/ECOS.2016.25-2.06

Chakraborty A, Ghosh A, Sachdeva K, Joshi PK (2017) Characterizing fragmentation trends of the Himalayan forests in the Kumaon region of Uttarakhand, India. Ecol Inform 38: 95–109. https://doi.org/10.1016/j.ecoinf.2016.12.006

Cuesta F, Peralvo M, Merino-Viteri A, Bustamante M, Baquero F, Freile JF, Muriel P, Torres-Carvajal O (2017) Priority areas for biodiversity conservation in mainland Ecuador. Neotrop Biodivers 3(1): 93–106. https://doi.org/10.1080/23766808.2017.1295705

Escribano-Avila G, Cervera L, Ordóñez-Delgado L, Jara-Guerrero A, Amador L, Paladines B, Briceño J, Parés-Jiménez V, Lizcano DJ, Duncan DH, Iván Espinosa C (2017) Biodiversity patterns and ecological processes in Neotropical dry forest: the need to connect research and management for long-term conservation. Neotrop Biodivers 3(1): 107–116. https://doi.org/10.1080/23766808.2017.1298495

Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34(1): 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison SP, Jaeger JAG, Koper N, Martin AE, Martin J-L, Metzger JP, Morrison P, Rhodes JR, Saunders DA, Simberloff D, Smith AC, Tischendorf L, Vellend M, Watling JI (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230: 179–186. https://doi.org/10.1016/j.biocon.2018.12.026

FAO (2011) State of the World's forests 2011. Roma http://www.fao.org/3/i2000e/i2000e00.htm. Accessed 22 Nov 2020
FAO (2020a) Evaluación de los recursos forestales mundiales 2020, Roma. https://doi.org/10.4060/ca8753es
DOI
FAO (2020b) Global Forest Resources Assessment 2020: Main report, China's Commercial Health Insurance. Rome. https://doi.org/10.4324/9780429340406-1
DOI
FAO, PNUMA (2020) El estado de los bosques del mundo 2020: Los bosques, la biodiversidad y las personas. Roma.

Feng Y, Chen X, Gao F, Liu Y (2018) Impacts of changing scale on Getis-Ord Gi* hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Acta Oceanol Sin 37: 67–76. https://doi.org/10.1007/s13131-018-1212-6

Ferrer-Paris JR, Zager I, Keith DA, Oliveira-Miranda MA, Rodríguez JP, Josse C, González-Gil M, Miller RM, Zambrana-Torrelio C, Barrow E (2018) An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv Lett 12(2): e12623. https://doi.org/10.1111/conl.12623

Ford SA, Jepsen MR, Kingston N, Lewis E, Brooks TM, MacSharry B, Mertz O (2020) Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Glob Ecol Biogeogr 29(11): 2014–2024. https://doi.org/10.1111/geb.13172

Forman RTT, Godron M (1989) Landscape ecology. Wiley, New York

Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 17(1): 149–157. https://doi.org/10.1046/j.1523-1739.2003.01140.x

Guerrero-Casado J, Seoane JM, Aguirre N, Torres-Porras J (2021) Success in conserving the bird diversity in tropical forests through private protected areas in Western Ecuador. Neotrop Biol Conserv 16(2): 351–367. https://doi.org/10.3897/neotropical.16.e63414

Hargis CD, Bissonette JA, David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc Ecol 13(3): 167–186. https://doi.org/10.1023/A:1007965018633

Hermosilla T, Wulder MA, White JC, Coops NC, Pickell PD, Bolton DK (2018) Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada. Remote Sens Environ 222: 65–77. https://doi.org/10.1016/j.rse.2018.12.027

Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8(1): 23–29. https://doi.org/10.1111/j.1461-0248.2004.00686.x

INEC (2019) Contenido Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC) 2018, Inec.
Instituto nacional de estadística (2019) Contador Nacional de población. http://www.ecuadorencifras.gob.ec/estadisticas/. Accessed 9 May 2019.
Instituto nacional de estadisticas y censos (2010) Población y Demografía. https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/. Accessed 22 Nov 2020.

Kupfer JA (2006) National assessments of forest fragmentation in the US. Glob Environ Chang 16(1): 73–82. https://doi.org/10.1016/j.gloenvcha.2005.10.003

Laurance WF, Carolina Useche D, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benítez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R, Cords M, Danielsen F, De Dijn B, Dinerstein E, Donnelly MA, Edwards D, Edwards F, Farwig N, Fashing P, Forget PM, Foster M, Gale G, Harris D, Harrison R, Hart J, Karpanty S, John Kress W, Krishnaswamy J, Logsdon W, Lovett J, Magnusson W, Maisels F, Marshall AR, McClearn D, Mudappa D, Nielsen MR, Pearson R, Pitman N, Van Der Ploeg J, Plumptre A, Poulsen J, Quesada M, Rainey H, Robinson D, Roetgers C, Rovero F, Scatena F, Schulze C, Sheil D, Struhsaker T, Terborgh J, Thomas D, Timm R, Nicolas Urbina-Cardona J, Vasudevan K, Joseph Wright S, Carlos Arias-G J, Arroyo L, Ashton M, Auzel P, Babaasa D, Babweteera F, Baker P, Banki O, Bass M, Bila-Isia I, Blake S, Brockelman W, Brokaw N, Brühl CA, Bunyavejchewin S, Chao JT, Chave J, Chellam R, Clark CJ, Clavijo J, Congdon R, Corlett R, Dattaraja HS, Dave C, Davies G, De Mello BB, De Nazaré Paes Da Silva R, Di Fiore A, Diesmos A, Dirzo R, Doran-Sheehy D, Eaton M, Emmons L, Estrada A, Ewango C, Fedigan L, Feer F, Fruth B, Giacalone Willis J, Goodale U, Goodman S, Guix JC, Guthiga P, Haber W, Hamer K, Herbinger I, Hill J, Huang Z, Fang Sun I, Ickes K, Itoh A, Ivanauskas N, Jackes B, Janovec J, Janzen D, Jiangming M, Jin C, Jones T, Justiniano H, Kalko E, Kasangaki A, Killeen T, King HB, Klop E, Knott C, Koné I, Kudavidanage E, Lahoz Da Silva Ribeiro J, Lattke J, Laval R, Lawton R, Leal M, Leighton M, Lentino M, Leonel C, Lindsell J, Ling-Ling L, Eduard Linsenmair K, Losos E, Lugo A, Lwanga J, MacK AL, Martins M, Scott McGraw W, McNab R, Montag L, Myers Thompson J, Nabe-Nielsen J, Nakagawa M, Nepal S, Norconk M, Novotny V, O'Donnell S, Opiang M, Ouboter P, Parker K, Parthasarathy N, Pisciotta K, Prawiradilaga D, Pringle C, Rajathurai S, Reichard U, Reinartz G, Renton K, Reynolds G, Reynolds V, Riley E, Rödel MO, Rothman J, Round P, Sakai S, Sanaiotti T, Savini T, Schaab G, Seidensticker J, Siaka A, Silman MR, Smith TB, De Almeida SS, Sodhi N, Stanford C, Stewart K, Stokes E, Stoner KE, Sukumar R, Surbeck M, Tobler M, Tscharntke T, Turkalo A, Umapathy G, Van Weerd M, Vega Rivera J, Venkataraman M, Venn L, Verea C, Volkmer De Castilho C, Waltert M, Wang B, Watts D, Weber W, West P, Whitacre D, Whitney K, Wilkie D, Williams S, Wright DD, Wright P, Xiankai L, Yonzon P, Zamzani F (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489(7415): 290–293. https://doi.org/10.1038/nature11318
DOI

Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29(2): 107–116. https://doi.org/10.1016/j.tree.2013.12.001

Leautaud Valenzuela P (2014) Fragmentación Forestal de la reserva monarca: cuantificación, caracterización, y correlaciones (1990–2010). Universidad nacional autónoma de México

Lessmann J, Muñoz J, Bonaccorso E (2014) Maximizing species conservation in continental Ecuador: a case of systematic conservation planning for biodiverse regions. Ecol Evol 4(12): 2410–2422. https://doi.org/10.1002/ece3.1102

Loaiza S (2013) The Tumbesian center of endemism: biogeography, diversity and conservation. Biogeografía 6: 4–10

MAE, MAGAP (2015) Protocolo metodológico para la elaboración del mapa de cobertura y uso de la tierra del Ecuador Continental 2013–2014 escala 1: 100.000. Ministerio del Ambiente del Ecuador y Ministerio de Agricultura, Ganadería, Acuacultura y Pesca

Manchego CE, Hildebrandt P, Cueva J, Espinosa CI, Stimm B, Günter S (2018) Climate change versus deforestation: implications for tree species distribution in the dry forests of southern Ecuador. PLoS One 13(4): e0195851. https://doi.org/10.1371/journal.pone.0195851

Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405(6783): 243–253. https://doi.org/10.1038/35012251

McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen tech rep PNW-GTR-351. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portlandhttps://doi.org/10.2737/PNW-GTR-351
DOI
Ministerio del Ambiente (2012) Línea base de deforestación del ecuador continental. Quito: Ministerio del Ambiente
Ministerio del Ambiente (2017) Deforestación del Ecuador Continental Periodo 2014–2016. http://reddecuador.ambiente.gob.ec/redd/wp-content/uploads/2019/12/Anexo-5.-Informe-de-Deforestaci%C3%B3n-Ecuador-Continental-periodo-2014-2016.pdf. Accessed 22 Nov 2020.
Ministerio del ambiente de Ecuador (2015) Fragmentacion De Ecosistemas Del Ecuador Contimental. Subsecretaria de Patrimonio Natural, Quito
Ministerio del ambiente del Ecuador (2012) Especies forestales de los bosques secos del Ecuador. Bosques Secos en Ecuador y su diversidad, Quito
Ministerio del ambiente del Ecuador (2013) Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural, Subsecretaría de Patrimonio Natural, Quito

Nelson HP, Devenish-Nelson ES, Rusk BL, Geary M, Lawrence AJ (2020) A review of tropical dry forest ecosystem service research in the Caribbean – gaps and policy-implications. Ecosyst Serv 43:101095. https://doi.org/10.1016/j.ecoser.2020.101095

Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4): 286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x

Parr TW, Jongman RHG, Külvik M (2010) The selection of biodiversity indicators for EBONE development work. EBONE European Biodiversity Observation Network: Design of a plan for an integrated biodiversity observing system in space and time, European Biodiversity Observation Network
Peralvo M, Delgado J (2010) Metodología para la Generación del Mapa de Deforestación Histórica. Quito: Ministerio del Ambiente and CONDESAN

Portillo-Quintero CA, Sánchez-Azofeifa GA (2010) Extent and conservation of tropical dry forests in the Americas. Biol Conserv 143(1): 144–155. https://doi.org/10.1016/j.biocon.2009.09.020

Prentice KC (1990) Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res 95(D8): 11.811–11.830. https://doi.org/10.1029/jd095id08p11811

Prieto-Torres DA, Nori J, Rojas-Soto OR (2018) Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol Conserv 228:205–214. https://doi.org/10.1016/j.biocon.2018.10.025

Puyravaud J-P (2003) Standardizing the calculation of the annual rate of deforestation. For Ecol Manag 177(1-3): 593–596. https://doi.org/10.1016/S0378-1127(02)00335-3

Rempel RS, Kaukinen D, Carr A (2012) Patch analyst and patch grid. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay

Rivas CA, Navarro-Cerillo RM, Johnston JC, Guerrero-Casado J (2020) Dry forest is more threatened but less protected than evergreen forest in Ecuador's coastal region. Environ Conserv 47(2): 79–83. https://doi.org/10.1017/S0376892920000077

Rios E, Benchimol M, Dodonov P, et al (2021) Testing the habitat amount hypothesis and fragmentation effects for medium- and large-sized mammals in a biodiversity hotspot. Landsc Ecol 36:1311–1323. https://doi.org/10.1007/s10980-021-01231-9

Sales LP, Galetti M, Pires MM (2020) Climate and land-use change will lead to a faunal "savannization" on tropical rainforests. Glob Chang Biol 26(12): 7036–7044. https://doi.org/10.1111/gcb.15374

Sandoval MFL, Gerique A, Pohle P (2017) What is behind land claims? Downsizing of a conservation area in southeastern Ecuador. Sustainability 9(9): 1–15. https://doi.org/10.3390/su9091519

Sierra R (2013) Patrones y factores de deforestación en el ecuador continental, 1990–2010. Y un acercamiento a los próximos 10 años. Conservación Internacional Ecuador y Forest Trends, Quito

Sierra R, Campos F, Chamberlin J (2002) Assessing biodiversity conservation priorities: Ecosystem risk and representativeness in continental Ecuador. Landsc Urban Plan 59:95–110. https://doi.org/10.1016/S0169-2046(02)00006-3

Siyum ZG (2020) Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecol Process 9(1): 25. https://doi.org/10.1186/s13717-020-00229-6

Smith V, Portillo-Quintero C, Sanchez-Azofeifa A, Hernandez-Stefanoni JL (2019) Assessing the accuracy of detected breaks in Landsat time series as predictors of small scale deforestation in tropical dry forests of Mexico and Costa Rica. Remote Sens Environ 221:707–721. https://doi.org/10.1016/j.rse.2018.12.020

Solórzano CB, Intriago-Alcívar L, Guerrero-Casado J (2021) Comparison between terrestrial mammals in evergreen forests and in seasonal dry forests in Western Ecuador: should efforts be focused on dry forests? Mammalia. 0(0). https://doi.org/10.1515/mammalia-2020-0145

Tapia-Armijos MF, Homeier J, Espinosa CI, Leuschner C, De La Cruz M (2015) Deforestation and forest fragmentation in South Ecuador since the 1970s - losing a hotspot of biodiversity. PLoS One 10(9): e0133701. https://doi.org/10.1371/journal.pone.0133701

Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E, Wiegand T, Huth A (2018) Global patterns of tropical forest fragmentation. Nature 554(7693): 519–522. https://doi.org/10.1038/nature25508

Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94(2): 133–142. https://doi.org/10.1016/S0006-3207(99)00188-3

Trigueiro WR, Nabout JC, Tessarolo G (2020) Uncovering the spatial variability of recent deforestation drivers in the Brazilian Cerrado. J Environ Manag 275:111243. https://doi.org/10.1016/j.jenvman.2020.111243

Tulloch AIT, Barnes MD, Ringma J, Fuller RA, Watson JEM (2016) Understanding the importance of small patches of habitat for conservation. J Appl Ecol 53(2): 418–429. https://doi.org/10.1111/1365-2664.12547

van Der Hoek Y (2017) The potential of protected areas to halt deforestation in Ecuador. Environ Conserv 44(2): 124–130. https://doi.org/10.1017/S037689291700011X

Villacís B, Carrillo D (2012) Estadística Demográfica en el Ecuador: Diagnóstico y Propuesta. Instituto Nacional de Estadística y Censos (INEC), Quito

Volenec ZM, Dobson AP (2020) Conservation value of small reserves. Conserv Biol 34(1): 66–79. https://doi.org/10.1111/cobi.13308

Whelan CJ, Maina GG (2005) Effects of season, understorey vegetation density, habitat edge and tree diameter on patch-use by bark-foraging birds. Funct Ecol 19(3): 529–536. https://doi.org/10.1111/j.1365-2435.2005.00996.x

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 January 2021
Accepted: 14 June 2021
Published: 11 July 2021
Issue date: September 2021

Copyright

© The Author(s) 2021.

Acknowledgements

Acknowledgements

José Guerrero-Casado is currently supported by the European Regional Development Fund (ERDF) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades (project reference: 1264483-R). Rafael M Navarro Cerrillo is particularly grateful for the support of the ISOPINE (UCO-1265298) and ESPECTRAMED (CGL2017-86161-R) projects. We acknowledge the institutional support of the University of Cordoba-Campus de Excelencia CEIA3.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return