Journal Home > Volume 8 , Issue 2
Background

National and international institutions periodically demand information on forest indicators that are used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators.

Methods

Stand level biomass models, relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models to estimate forest carbon stocks, updated for a given year, was also analysed.

Results

The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size, although the effect varied among the five pine species. Site humidity, measured using the Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg∙ha-1.

Conclusions

The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models. The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available.


menu
Abstract
Full text
Outline
About this article

Stand-level biomass models for predicting C stock for the main Spanish pine species

Show Author's information Ana Aguirre1,2Miren del Río2,3Ricardo Ruiz-Peinado2,3Sonia Condés1
Department of Natural Systems and Resources, School of Forest Engineering and Natural Resources, Universidad Politécnica de Madrid, Madrid, Spain
INIA, Forest Research Center, Department of Forest Dynamics and Management, Madrid, Spain
iuFOR, Sustainable Forest Management Research Institute, University of Valladolid and INIA, Valladolid, Spain

Abstract

Background

National and international institutions periodically demand information on forest indicators that are used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators.

Methods

Stand level biomass models, relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models to estimate forest carbon stocks, updated for a given year, was also analysed.

Results

The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size, although the effect varied among the five pine species. Site humidity, measured using the Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg∙ha-1.

Conclusions

The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models. The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available.

Keywords: National Forest Inventory, Martonne aridity index, Dry weight biomass, Carbon stock, Peninsular pine forest, Biomass expansion factor

References(83)

Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L (2015) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep 5(1): 15991. https://doi.org/10.1038/srep15991

Aguirre A, del Río M, Condés S (2018) Intra- and inter-specific variation of the maximum size-density relationship along an aridity gradient in Iberian pinewoods. Forest Ecol Manag 411: 90-100. https://doi.org/10.1016/j.foreco.2018.01.017

Aguirre A, del Río M, Condés S (2019) Productivity estimations for monospecific and mixed pine forests along the Iberian Peninsula aridity gradient. Forests 10(5): 430. https://doi.org/10.3390/f10050430

Akaike H (1974) A new look at the statistical model identification. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected papers of Hirotugu Akaike. Springer series in statistics (perspectives in statistics). Springer, New York, pp 215-222. https://doi.org/10.1007/978-1-4612-1694-0_16
DOI
Alberdi I (2015) Metodología para la estimación de indicadores armonizados a partir de los inventarios forestales nacionales europeos con especial énfasis en la biodiversidad forestal. (Tesis Doctoral, Universidad Politécnica de Madrid). Madrid, España

Alberdi I, Cañellas I, Vallejo R (2017) The Spanish National Forest Inventory: history, development, challenges and perspectives. Pesqui Florestal Bras 37(91): 361-368. https://doi.org/10.4336/2017.pfb.37.91.1337

Alberdi I, Condés D, Millán J, Saura S, Sánchez G, Pérez F, Villanueva J, Vallejo R (2010) National forest inventories report, Spain (chapter 34). National forest inventories Pathways for common reporting, Springer, Berlin, pp 527-540
Alía R, García del Barrio J, Iglesias Sauce S, Mancha Núñez J, de Miguel y del Ángel J, Nicolás Peragón J, Pérez Martín F, de Ron DS (2009) Regiones de procedencia de especies forestales españolas. Organismo Autónomo Parques Nacionales, Madrid

Álvarez-González J, Cañellas I, Alberdi I, Gadow K, Ruiz-González A (2014) National Forest Inventory and forest observational studies in Spain: applications to forest modeling. Forest Ecol Manag 316: 54-64. https://doi.org/10.1016/j.foreco.2013.09.007

Barton K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn. Accessed 15 Jan 2021

Bravo-Oviedo A, Ruiz-Peinado R, Modrego P, Alonso R, Montero G (2015) Forest thinning impact on carbon stock and soil condition in southern European populations ofP. sylvestris L. Forest Ecol Manag 357: 259-267. https://doi.org/10.1016/j.foreco.2015.08.005

Breidenich C, Magraw D, Rowley A, Rubin JW (1998) The Kyoto protocol to the United Nations framework convention on climate change. Am J Int Law 92(2): 315-331. https://doi.org/10.2307/2998044

Briggs JM, Knapp AK (1995) Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. Am J Bot 82(8): 1024-1030. https://doi.org/10.1002/j.1537-2197.1995.tb11567.x

Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116(3): 363-372. https://doi.org/10.1016/S0269-7491(01)00212-3

Brüchert F, Gardiner B (2006) The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am J Bot 93(10): 1512-1521. https://doi.org/10.3732/ajb.93.10.1512

Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world's upland forests. Oecologia 111(1): 1-11. https://doi.org/10.1007/s004420050201

Cameron A, Watson B (1999) Effect of nursing mixtures on stem form, crown size, branching habit and wood properties of Sitka spruce (Picea sitchensis (bong. ) Carr. ). Forest Ecol Manag 122(1-2): 113-124. https://doi.org/10.1016/S0378-1127(99)00036-5

Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, Barrio-Anta M, Crecente-Campo F (2012) Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in Northwest Spain. Ann Forest Sci 69(6): 735-746. https://doi.org/10.1007/s13595-012-0191-6

Condés S, Del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. Forest Ecol Manag 292: 86-95. https://doi.org/10.1016/j.foreco.2012.12.013

Condés S, McRoberts RE (2017) Updating national forest inventory estimates of growing stock volume using hybrid inference. Forest Ecol Manag 400: 48-57. https://doi.org/10.1016/j.foreco.2017.04.046

Condés S, Sterba H, Aguirre A, Bielak K, Bravo-Oviedo A, Coll L, Pach M, Pretzsch H, Vallet P, del Río M (2018) Estimation and uncertainty of the mixing effects on scots pine—European beech productivity from national forest inventories data. Forests 9(9): 518. https://doi.org/10.3390/f9090518

Cox DR, Snell EJ (1989) The analysis of binary data, 2nd edn. Chapman and Hall, Londonhttps://doi.org/10.2307/2531476
DOI

Dahlhausen J, Uhl E, Heym M, Biber P, Ventura M, Panzacchi P, Tonon G, Horváth T, Pretzsch H (2017) Stand density sensitive biomass functions for young oak trees at four different European sites. Trees 31(6): 1811-1826. https://doi.org/10.1007/s00468-017-1586-7

Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081): 165-173. https://doi.org/10.1038/nature04514

De Martonne E (1926) L'indice d'aridité. Bull Assoc Géographes Fr 3(9): 3-5. https://doi.org/10.3406/bagf.1926.6321

del Río M, Barbeito I, Bravo-Oviedo A, Calama C, Cañellas I, Herrero C, Montero G, Moreno-Fernández D, Ruiz-Peinado R, Bravo F (2017) In: Bravo F, LeMay V, Jandl R (eds) Managing forest ecosystems: the challenge of climate change. Managing Forest Ecosystems, vol 34. Springer, Cham, pp 301-327. https://doi.org/10.1007/978-3-319-28250-3_15
DOI

Di Cosmo L, Gasparini P, Tabacchi G (2016) A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. Forest Ecol Manag 361: 269-276. https://doi.org/10.1016/j.foreco.2015.11.008

Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (2006) IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies Hayama, Japan

Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525): 2320-2322. https://doi.org/10.1126/science.1058629

Fang J-Y, Wang GG, Liu G-H, Xu S-L (1998) Forest biomass of China: an estimate based on the biomass-volume relationship. Ecol Appl 8: 1084-1091

Forrester DI, Tachauer IHH, Annighoefer P, Barbeito I, Pretzsch H, Ruiz-Peinado R, Sileshi GW (2017) Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management 396: 160-175

Führer E, Horváth L, Jagodics A, Machon A, Szabados I (2011) Application of a new aridity index in Hungarian forestry practice. Időjárás 115: 205-216

Global Forest Resources Assessment (2020)Main report. Rome
Gonzalo Jiménez J (2010) Diagnosis fitoclimática de la España peninsular. Hacia un modelo de clasificación funcional de la vegetación y de los ecosistemas peninsulares españoles. Organismo Autónomo de Parques Nacionales (MARM), Madrid

Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12(3): 891-899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2

Guo Z, Fang J, Pan Y, Birdsey R (2010) Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. Forest Ecol Manag 259(7): 1225-1231. https://doi.org/10.1016/j.foreco.2009.09.047

Houghton JT, Meiro Filho L, Callander BA, Harris N, Kattenburg A, Maskell K (1996) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge

Houghton R, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophy Res Biogeo 114: G00E03

Ibáñez J, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. El Inventario Forestal Nacional: elemento clave para la Gestión Forestal Sostenible. Fundación General de la Universidad de Valladolid, Valladolid, pp 67-77

Jagodziński AM, Dyderski MK, Horodecki P (2020) Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L. ) H. Karst. and Fagus sylvatica L. Forest Ecol Manag 474: 118329. https://doi.org/10.1016/j.foreco.2020.118329

Jagodziński AM, Zasada M, Bronisz K, Bronisz A, Bijak S (2017) Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecol Manag 384: 208-220. https://doi.org/10.1016/j.foreco.2016.10.051

Jalkanen A, Mäkipää R, Ståhl G, Lehtonen A, Petersson H (2005) Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Ann For Sci 62(8): 845-851. https://doi.org/10.1051/forest:2005075

James J, Harrison R (2016) The effect of harvest on forest soil carbon: a meta-analysis. Forests 7(12): 308. https://doi.org/10.3390/f7120308

Kassa A, Konrad H, Geburek T (2017) Landscape genetic structure of Olea europaea subsp. cuspidata in Ethiopian highland forest fragments. Conserva Genet 18(6): 1463-1474. https://doi.org/10.1007/s10592-017-0993-z

Kollmann FFP (1959) Tecnología de la madera y sus aplicaciones. Ministerio de Agricultura, Madrid

Lehtonen A, Cienciala E, Tatarinov F, Mäkipää R (2007) Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Ann Forest Sci 64(2): 133-140. https://doi.org/10.1051/forest:2006097

Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecol Manag 188(1-3): 211-224. https://doi.org/10.1016/j.foreco.2003.07.008

Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21(10): 1017-1028. https://doi.org/10.1111/j.1466-8238.2011.00746.x

Magee L (1990) R2 measures based on Wald and likelihood ratio joint significance tests. Am Stat 44: 250-253

Mäkipää R, Lehtonen A, Peltoniemi M (2008) Forest inventories as a source of information for assessment of carbon. In: Dolman H, Valentini R, Freibauer A (eds) The continental-scale greenhouse gas balance of Europe (ecological studies). Springer, New York, pp 192-195

Martin GL (1982) A method for estimating ingrowth on permanent horizontal sample points. For Sci 28: 110-114

McCullagh A, Black K, Nieuwenhuis M (2017) Evaluation of tree and stand-level growth models using national forest inventory data. Eur J Forest Res 136(2): 251-258. https://doi.org/10.1007/s10342-017-1025-8

McRoberts RE, Tomppo EO (2007) Remote sensing support for national forest inventories. Remote Sens Environ 110(4): 412-419. https://doi.org/10.1016/j.rse.2006.09.034

Menéndez-Miguélez M, Ruiz-Peinado R, del Río M, Calama R (2021) Improving tree biomass models through crown ratio patterns and incomplete data sources. Eur J Forest Res. https://doi.org/10.1007/s10342-021-01354-3
DOI
Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. INIA-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid
Montero G, Serrada R (2013) La situación de los bosques y el sector forestal en España-ISFE 2013. Sociedad Española de Ciencias Forestales, Lourizán (Pontevedra)

Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3): 691-692. https://doi.org/10.1093/biomet/78.3.691

Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WM, Thivolle-Cazat A, Bronisz K, Merganič J, Decuyper M, Alberdi I, Astrup R, Mohren F, Hasenauer H (2016) Comparison of carbon estimation methods for European forests. Forest Ecol Manag 361: 397-420. https://doi.org/10.1016/j.foreco.2015.11.016

Peichl M, Arain MA (2007) Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecol Manag 253(1-3): 68-80. https://doi.org/10.1016/j.foreco.2007.07.003

Peng C (2000) Growth and yield models for uneven-aged stands: past, present and future. Forest Ecol Manag 132(2-3): 259-279. https://doi.org/10.1016/S0378-1127(99)00229-7

Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. The Institute for Global Environmental Strategies (IGES) for the IPCC, Hayama, Kanagawa

Petersson H, Holm S, Ståhl G, Alger D, Fridman J, Lehtonen A, Lundström A, Mäkipää R (2012) Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass-a comparative study. Forest Ecol Manag 270: 78-84. https://doi.org/10.1016/j.foreco.2012.01.004

Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package 'nlme'. Linear and Nonlinear Mixed Effects Models, version 3.1. https://cran.r-project.org/. Accessed 15 Jan 2021

Pretzsch H, del Río M, Biber P, Arcangeli C, Bielak K, Brang P, Dudzinska M, Forrester DI, Klädtke J, Kohnle U, Ledermann T, Matthews R, Nagel J, Nagel R, Nilsson U, Ningre F, Nord-Larsen T, Wernsdorfer H, Sycheva E (2019) Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. Eur J Forest Res 138(1): 165-185. https://doi.org/10.1007/s10342-018-1151-y

Ruiz-Peinado R, Bravo-Oviedo A, López-Senespleda E, Montero G, Río M (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J Forest Res 132(2): 253-262. https://doi.org/10.1007/s10342-012-0672-z

Ruiz-Peinado R, del Río M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. Forest Syst 20(1): 176-188. https://doi.org/10.5424/fs/2011201-11643

Schepaschenko D, Moltchanova E, Shvidenko A, Blyshchyk V, Dmitriev E, Martynenko O, See L, Kraxner F (2018) Improved estimates of biomass expansion factors for Russian forests. Forests 9(6): 312. https://doi.org/10.3390/f9060312

Shortt JS, Burkhart HE (1996) A comparison of loblolly pine plantation growth and yield models for inventory updating. South J Appl For 20(1): 15-22. https://doi.org/10.1093/sjaf/20.1.15

Soares P, Tomé M (2004) Analysis of the effectiveness of biomass expansion factors to estimate stand biomass. Proceedings of the International Conference on Modeling Forest Production, 19-22 April, Austria, pp 368-374
State of Europe's Forests (2015)Europe's Status & Trends in Sustainable Forest Management in Europe

Stegen JC, Swenson NG, Enquist BJ, White EP, Phillips OL, Jørgensen PM, Weiser MD, Monteagudo Mendoza A, Núñez Vargas P (2011) Variation in above-ground forest biomass across broad climatic gradients. Glob Ecol Biogeogr 20(5): 744-754. https://doi.org/10.1111/j.1466-8238.2010.00645.x

Tang X, Fehrmann L, Guan F, Forrester DI, Guisasola R, Kleinn C (2016) Inventory-based estimation of forest biomass in Shitai County, China: a comparison of five methods. Ann For Res 59: 269-280

Team RC (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna http://www.R-project.org/. Accessed 15 Jan 2021

Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA (2009) Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecol Manag 257(3): 1004-1013. https://doi.org/10.1016/j.foreco.2008.11.002

Tobin B, Nieuwenhuis M (2007) Biomass expansion factors for Sitka spruce (Picea sitchensis (bong.) Carr.) in Ireland. Eur J Forest Res 126(2): 189-196. https://doi.org/10.1007/s10342-005-0105-3

Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (2010) National forest inventories: pathways for common reporting. Springer, Netherlands, pp 541-553. https://doi.org/10.1007/978-90-481-3233-1
DOI

Tomter SM, Kuliešis A, Gschwantner T (2016) Annual volume increment of the European forests—description and evaluation of the national methods used. Ann Forest Sci 73(4): 849-856. https://doi.org/10.1007/s13595-016-0557-2

Vicente-Serrano SM, Cuadrat-Prats JM, Romo A (2006) Aridity influence on vegetation patterns in the middle Ebro Valley (Spain): evaluation by means of AVHRR images and climate interpolation techniques. J Arid Environ 66(2): 353-375. https://doi.org/10.1016/j.jaridenv.2005.10.021

Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS One 8(2): e53530. https://doi.org/10.1371/journal.pone.0053530

Villanueva J (2005) Tercer inventario forestal nacional (1997-2007). Ministerio de Medio Ambiente, Madrid

Wirth C, Schumacher J, Schulze E-D (2004) Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24(2): 121-139. https://doi.org/10.1093/treephys/24.2.121

Yu D, Wang X, Yin Y, Zhan J, Lewis BJ, Tian J, Bao Y, Zhou W, Zhou L, Dai L (2014) Estimates of forest biomass carbon storage in Liaoning Province of Northeast China: a review and assessment. PLoS One 9(2): e89572. https://doi.org/10.1371/journal.pone.0089572

Zhou X, Lei X, Peng C, Wang W, Zhou C, Liu C, Liu Z (2016) Correcting the overestimate of forest biomass carbon on the national scale. Method Ecol Evol 7(4): 447-455. https://doi.org/10.1111/2041-210X.12505

Publication history
Copyright
Rights and permissions

Publication history

Received: 16 December 2020
Accepted: 20 April 2021
Published: 14 May 2021
Issue date: June 2021

Copyright

© The Author(s) 2021.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return