Journal Home > Volume 7 , Issue 3
Background

Scenario analyses that evaluate management effects on the long-term provision and sustainability of forest ecosystem services and biodiversity (ESB) also need to account for disturbances. The objectives of this study were to reveal potential trade-offs and synergies between ESB provision and disturbance predisposition at the scale of a whole country.

Methods

The empirical scenario model MASSIMO was used to simulate forest development and management from years 2016 to 2106 on 5086 sample plots of the Swiss National Forest Inventory (NFI). We included a business-as-usual (BAU) scenario and four scenarios of increased timber harvesting. Model output was evaluated with indicators for 1) ESB provision including a) timber production, b) old-growth forest characteristics as biodiversity proxies and c) protection against rockfall and avalanches and 2) for a) storm and b) bark beetle predisposition.

Results

The predisposition indicators corresponded well (AUC: 0.71–0.86) to storm and insect (mostly bark beetle) damage observations in logistic regression models. Increased timber production was generally accompanied with decreased predisposition (storm: > -11%, beetle: > -37%, depending on region and scenario), except for a scenario that promoted conifers where beetle predisposition increased (e.g. + 61% in the Southern Alps). Decreased disturbance predisposition and decreases in old-growth forest indicators in scenarios of increased timber production revealed a trade-off situation. In contrast, growing stock increased under BAU management along with a reduction in conifer proportions, resulting in a reduction of beetle predisposition that in turn was accompanied by increasing old-growth forest indicators. Disturbance predisposition was elevated in NFI plots with high avalanche and rockfall protection value.

Conclusions

By evaluating ESB and disturbance predisposition based on single-tree data at a national scale we bridged a gap between detailed, stand-scale assessments and broader inventory-based approaches at the national scale. We discuss the limitations of the indicator framework and advocate for future amendments that include climate-sensitive forest development and disturbance modelling to strengthen decision making in national forest policy making.


menu
Abstract
Full text
Outline
About this article

Trade-offs between ecosystem service provision and the predisposition to disturbances:a NFI-based scenario analysis

Show Author's information Christian Temperli1( )Clemens Blattert1,2Golo Stadelmann1Urs-Beat Brändli1Esther Thürig1
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
University of Jyväskylä, FI-40014 Jyväskylä, Finland

Abstract

Background

Scenario analyses that evaluate management effects on the long-term provision and sustainability of forest ecosystem services and biodiversity (ESB) also need to account for disturbances. The objectives of this study were to reveal potential trade-offs and synergies between ESB provision and disturbance predisposition at the scale of a whole country.

Methods

The empirical scenario model MASSIMO was used to simulate forest development and management from years 2016 to 2106 on 5086 sample plots of the Swiss National Forest Inventory (NFI). We included a business-as-usual (BAU) scenario and four scenarios of increased timber harvesting. Model output was evaluated with indicators for 1) ESB provision including a) timber production, b) old-growth forest characteristics as biodiversity proxies and c) protection against rockfall and avalanches and 2) for a) storm and b) bark beetle predisposition.

Results

The predisposition indicators corresponded well (AUC: 0.71–0.86) to storm and insect (mostly bark beetle) damage observations in logistic regression models. Increased timber production was generally accompanied with decreased predisposition (storm: > -11%, beetle: > -37%, depending on region and scenario), except for a scenario that promoted conifers where beetle predisposition increased (e.g. + 61% in the Southern Alps). Decreased disturbance predisposition and decreases in old-growth forest indicators in scenarios of increased timber production revealed a trade-off situation. In contrast, growing stock increased under BAU management along with a reduction in conifer proportions, resulting in a reduction of beetle predisposition that in turn was accompanied by increasing old-growth forest indicators. Disturbance predisposition was elevated in NFI plots with high avalanche and rockfall protection value.

Conclusions

By evaluating ESB and disturbance predisposition based on single-tree data at a national scale we bridged a gap between detailed, stand-scale assessments and broader inventory-based approaches at the national scale. We discuss the limitations of the indicator framework and advocate for future amendments that include climate-sensitive forest development and disturbance modelling to strengthen decision making in national forest policy making.

Keywords: Empirical model, Ecosystem services, Disturbance, Forest inventory, Scenario analysis

References(102)

Abegg M, Brändli U-B, Cioldi F (2014a) Fourth national forest inventory—result tables and maps on the Internet for the NFI 2009–2013 (NFI4b). http://www.lfi.ch. Accessed 28 Oct 2015
Abegg M, Brändli U-B, Cioldi F, Fischer C, Herold-Bonardi A, Huber M, Keller M, Meile R, Rösler E, Speich S, Traub B, Vidondo B (2014b) Swiss national forest inventory - result table no. 122760, 122792, 122812 and 122824: number of forest plots. Birmensdorf, Swiss Fed Res Inst WSL. https://doi.org/10.21258/1382246, https://doi.org/10.21258/1382215, https://doi.org/10.21258/1382194, https://doi.org/10.21258/1382183

Albrecht A, Hanewinkel M, Bauhus J, Kohnle U (2012) How does silviculture affect storm damage in forests of South-Western Germany? Results from empirical modeling based on long-term observations. Eur J For Res 131:229–247. https://doi.org/10.1007/s10342-010-0432-x

Albrich K, Rammer W, Thom D, Seidl R (2018) Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecol Appl 28:1884–1896. https://doi.org/10.1002/eap.1785

Amman M (2006) Schutzwirkung abgestorbener Baume gegen Naturgefahren. PhD Thesis, Diss ETH Nr. 16638, ETH Zürich

Berger F, Dorren LKA (2007) Principles of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest. Schweiz Z Für Forstwes 158:157–165. https://doi.org/10.3188/szf.2007.0157

Blattert C, Lemm R, Thees O, Lexer MJ, Hanewinkel M (2017) Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol Indic 79:391–409. https://doi.org/10.1016/j.ecolind.2017.04.025

Bouget C, Duelli P (2004) The effects of windthrow on forest insect communities: a literature review. Biol Conserv 118:281–299. https://doi.org/10.1016/j.biocon.2003.09.009

Bouget C, Parmain G, Gilg O, Nobelcourt T, Nusillard B, Paillet Y, Pernot C, Larrieu L, Gosselin F (2014) Does a set-aside conservation strategy help the restoration of old-growth forest attributes and recolonization by saproxylic beetles? Anim Conserv 17:342–353. https://doi.org/10.1111/acv.12101

Brändli UB, Abegg M (2009) Ergebnisse des dritten Landesforstinventars LFI3 - Der Schweizer Wald wird immer natürlicher. Wald Holz 09:27–29

Brändli U-B, Röösli B (2015) Resources. Forest report 2015 condition and use Swiss forests. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 29–42
Brändli UB, Speich S (2007) Stemwood. Swiss NFI glossary and dictionary. Swiss Federal Research Institute WSL, Birmensdorf. http://www.lfi.ch/glossar/glossar-en.php. Accessed 20 Nov 2018
Brang P, Schönenberger W, Bachofen H, Zingg A, Wehrli A (2004) Schutzwalddynamik unter Störungen und Eingriffen: Auf dem Weg zu einer systemischen Sicht. Eidg Forschungsanstalt WSL Forum Für Wissen, pp 55–66
Brang P, Schönenberger W, Ott E, Gardner B (2008) Forests as protection from natural hazards. In: Evans J (ed) The forest handbook. Blackwell Science Ltd, Oxford, UK, pp 53–81https://doi.org/10.1002/9780470757079.ch3
DOI
Brang P, Küchli C, Schwitter R, Bugmann H, Ammann P (2016) Waldbauliche Strategien im Klimawandel. In: Pluess AR, Augustin S, Brang P (eds) Wald Im Klimawandel Grundlagen Für Adapt. Bundesamt für Umwelt BAFU Bern; Eidg. Forschungsanstalt WSL, Birmensdorf; Haupt, Bern, Stuttgart, Wien., pp 341–367

Bugmann H, Cordonnier T, Truhetz H, Lexer MJ (2017) Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change. Reg Environ Chang 17:3–16. https://doi.org/10.1007/s10113-016-1074-4

Cantarello E, Newton AC, Martin PA, Evans PM, Gosal A, Lucash MS (2017) Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape. Ecol Evol 7:9661–9675. https://doi.org/10.1002/ece3.3491

CH2018 (2018) CH2018—climate scenarios for Switzerland, Technical Report. National Centre for Climate Services, Zurich
Cioldi F, Baltensweiler A, Brändli U-B, Duc P, Ginzler C, Herold BA, Thürig E, Ulmer U (2010) Waldressourcen. In: Brändli U-B (ed) Schweiz. Landesforstinventar Ergeb. Dritten Erheb. 2004–2006. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt, BAFU, Birmensdorf, Bern, pp 31–114

Conner LG, Bunnell MC, Gill RA (2014) Forest diversity as a factor influencing Engelmann spruce resistance to beetle outbreaks. Can J For Res 44:1369–1375. https://doi.org/10.1139/cjfr-2014-0236

Cordonnier T, Courbaud B, Berger F, Franc A (2008) Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: a simulation study. For Ecol Manag 256:347–354. https://doi.org/10.1016/j.foreco.2008.04.028

Cordonnier T, Berger F, Elkin CM, Lämås T, Martinez M (2013) ARANGE deliverable D2.2: models and linker functions (indicators) for ecosystem services. ARANGE - Grant no. 289437- advanced multifunctional forest management in European mountain ranges. http://www.arange-project.eu/wp-content/uploads/ARANGE-D2.2_Models-and-linker-functions.pdf. Accessed 28 Oct 2015

DeRose RJ, Long JN (2014) Resistance and resilience: a conceptual framework for silviculture. For Sci 60:1205–1212

Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 77:187–205

Dorren L, Berger F, Frehner M, Huber M, Kühne K, Métral R, Sandri A, Schwitter R, Thormann J-J, Wasser B (2015) Das neue NaiS-Anforderungsprofil Steinschlag. Schweiz Z Forstwes 166:16–23. https://doi.org/10.3188/szf.2015.0016

Eggers J, Holmgren S, Nordström E-M, Lämås T, Lind T, Öhman K (2017) Balancing different forest values: evaluation of forest management scenarios in a multi-criteria decision analysis framework. For Policy Econ. https://doi.org/10.1016/j.forpol.2017.07.002
DOI

Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2℃ warmer world is not safe for ecosystem services in the European Alps. Glob Chang Biol 19:1827–1840. https://doi.org/10.1111/gcb.12156

Federal Office for the Environment FOEN (2013) Forest Policy 2020. Visions, objectives and measures for the sustainable management of forests in Switzerland. Federal Office for the Environment FOEN, Bern
Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfuntion. Bundesamt für Umwelt, Wald und Landschaft (BUWAL)

Fuhr M, Bourrier F, Cordonnier T (2015) Protection against rockfall along a maturity gradient in mountain forests. For Ecol Manag 354:224–231. https://doi.org/10.1016/j.foreco.2015.06.012

Gardiner BA, Quine CP (2000) Management of forests to reduce the risk of abiotic damage — a review with particular reference to the effects of strong winds. For Ecol Manag 135:261–277. https://doi.org/10.1016/S0378-1127(00)00285-1

Ghimire B, Williams CA, Collatz GJ, Vanderhoof M, Rogan J, Kulakowski D, Masek J (2015) Large carbon release legacy from bark beetle outbreaks across Western United States. Glob Chang Biol 21:3087–3101. https://doi.org/10.1111/gcb.12933

Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res Earth Surf 112:1–10. https://doi.org/10.1029/2006JF000547

Gustafson EJ, Zollner PA, Sturtevant BR, He HS, Mladenoff DJ (2004) Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Landsc Ecol 19:327–341. https://doi.org/10.1023/B:LAND.0000030431.12912.7f

Gutsch M, Lasch-Born P, Kollas C, Suckow F, Reyer CPO (2018) Balancing trade-offs between ecosystem services in Germany's forests under climate change. Environ Res Lett 13:045012. https://doi.org/10.1088/1748-9326/aab4e5

Hilmers T, Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J (2018) Biodiversity along temperate forest succession. J Appl Ecol 55:2756–2766. https://doi.org/10.1111/1365-2664.13238

Hood SM, Baker S, Sala A (2016) Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecol Appl 26:1984–2000. https://doi.org/10.1002/eap.1363

Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, third edition. Wiley, Hobokenhttps://doi.org/10.1002/9781118548387
DOI

Huang S, Ramirez C, McElhaney M, Evans K (2018) F3: simulating spatiotemporal forest change from field inventory, remote sensing, growth modeling, and management actions. For Ecol Manag 415–416:26–37. https://doi.org/10.1016/j.foreco.2018.02.026

Irauschek F, Rammer W, Lexer MJ (2017) Can current management maintain forest landscape multifunctionality in the Eastern Alps in Austria under climate change? Reg Environ Chang 17:33–48. https://doi.org/10.1007/s10113-015-0908-9

Jactel H, Nicoll B, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, Schelhaas MJ, Tojic K, Vodde F (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:701. https://doi.org/10.1051/forest/2009054

Jakoby O, Wermelinger B, Stadelmann G, Lischke H (2015) Borkenkäfer im Klimawandel - Modellierung des künftigen Befallsrisikos durch den Buchdrucker (Ips typographus). Eidg. Forschungsanstalt WSL, Birmensdorf
Jakoby O, Stadelmann G, Lischke H, Wermelinger B (2016) Borkenkäfer und Befallsdisposition der Fichte im Klimawandel. In: Pluess AR, Augustin S, Brang P (eds) Wald Im Klimawandel Grundlagen Für Aaptionsstrategien. Bundesamt für Umwelt BAFU Bern; Eidg. Forschungsanstalt WSL, Birmensdorf; Haupt, Bern, Stuttgart, Wien., pp 247–264

Jandl R, Ledermann T, Kindermann G, Freudenschuss A, Gschwantner T, Weiss P (2018) Strategies for climate-smart forest management in Austria. Forests 9:592. https://doi.org/10.3390/f9100592

Krumm F, Kulakowski D, Spiecker H, Duc P, Bebi P (2011) Stand development of Norway spruce dominated subalpine forests of the Swiss Alps. For Ecol Manag 262:620–628. https://doi.org/10.1016/j.foreco.2011.04.030

Lachat T, Brang P, Bolliger M, Bollmann K, Brändli U, Bütler R, Herrmann S, Schneider O, Wermelinger B (2014) Totholz im Wald. Entstehung, Bedeutung und Förderung. Merkbl Für Prax Eidg Forschungsanstalt Für Wald Schnee Landsch WSL Birmensdorf 52:12

Lanz A, Abegg M, Braendli U-B, Camin P, Cioldi F, Ginzler C, Fischer C (2016) Switzerland. In: Vidal C, Alberdi IA, Hernández Mateo L, Redmond JJ (eds) National forest inventories. Assessment of wood availability and use. Springer International Publishing, Cham, pp 783–805https://doi.org/10.1007/978-3-319-44015-6_43
DOI

Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039. https://doi.org/10.1016/j.ecolind.2011.02.004

Lehnert LW, Bässler C, Brandl R, Burton PJ, Müller J (2013) Conservation value of forests attacked by bark beetles: highest number of indicator species is found in early successional stages. J Nat Conserv 21:97–104. https://doi.org/10.1016/j.jnc.2012.11.003

Lexer MJ, Seidl R (2009) Addressing biodiversity in a stakeholder-driven climate change vulnerability assessment of forest management. For Ecol Manag 258:S158–S167

Loisel P (2014) Impact of storm risk on Faustmann rotation. For Policy Econ 38:191–198. https://doi.org/10.1016/j.forpol.2013.08.002

Losey S, Wehrli A (2013) Schutzwald in der Schweiz: Vom Projekt SilvaProtect-CH zum harmonisierten Schutzwald. Bundesamt für Umwelt, Bern

Mackensen J, Bauhus J, Webber E (2003) Decomposition rates of coarse woody debris – a review with particular emphasis on Australian tree species. Aust J Bot 51:27–37

Maroschek M, Rammer W, Lexer MJ (2014) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Chang 15:1543–1555. https://doi.org/10.1007/s10113-014-0691-z

Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann For Sci 62:9. https://doi.org/10.1051/forest:2005025

Mikoláš M, Svitok M, Tejkal M, Leitão PJ, Morrissey RC, Svoboda M, Seedre M, Fontaine JB (2015) Evaluating forest management intensity on an umbrella species: capercaillie persistence in Central Europe. For Ecol Manag 354:26–34. https://doi.org/10.1016/j.foreco.2015.07.001

Mikoláš M, Svitok M, Bollmann K, Reif J, Bače R, Janda P, Trotsiuk V, Čada V, Vítková L, Teodosiu M, Coppes J, Schurman JS, Morrissey RC, Mrhalová H, Svoboda M (2017) Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For Ecol Manag 405:210–218. https://doi.org/10.1016/j.foreco.2017.09.006

Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

Mina M, Bugmann H, Cordonnier T, Irauschek F, Klopcic M, Pardos M, Cailleret M (2017a) Future ecosystem services from European mountain forests under climate change. J Appl Ecol 54:389–401. https://doi.org/10.1111/1365-2664.12772

Mina M, Huber MO, Forrester DI, Thürig E, Rohner B (2017b) Multiple factors modulate tree growth complementarity in Central European mixed forests. J Ecol 106:1106–1119. https://doi.org/10.1111/1365-2745.12846

Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17:1526–1535. https://doi.org/10.1111/ele.12357

Nabuurs G-J, Delacote P, Ellison D, Hanewinkel M, Lindner M, Nesbit M, Ollikainen M, Savaresi A (2015) A new role for forests and the forest sector in the EU post-2020 climate targets. From Science to policy 2. European Forest Institute. https: //doi.org/10.36333/fs02https://doi.org/10.36333/fs02
DOI
Netherer S (2003) Modelling of bark beetle development and of site- and stand-related predisposition to Ips typographus (L.) (Coleoptera; Scolytidae)—A contribution to risk assessment Dissertation. PhD Thesis, Universität für Bodenkultur BOKU

Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CD, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30:673–684. https://doi.org/10.1016/j.tree.2015.08.009

Pardowitz T (2015) Anthropogenic changes in the frequency and severity of European winter storms: mechanisms, impacts and their uncertainties. PhD Thesis, Freie Universität Berlin

Peltola H, Ikonen V-P, Gregow H, Strandman H, Kilpeläinen A, Venäläinen A, Kellomäki S (2010) Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For Ecol Manag 260:833–845. https://doi.org/10.1016/j.foreco.2010.06.001

Perzl F (2006) Die Buche- eine Baumart des Objektschutzwaldes. BFW Praxisinformation 12:29–31

Rammig A, Fahse L, Bebi P, Bugmann H (2007) Wind disturbance in mountain forests: simulating the impact of management strategies, seed supply, and ungulate browsing on forest succession. For Ecol Manag 242:142–154. https://doi.org/10.1016/j.foreco.2007.01.036

Remund J, von Arx G, Gallien L, Rebetez M, Huber B, Zimmermann NE (2016) Klimawandel in der Schweiz – Entwicklung waldrelevanter Klimagrössen. In: Pluess AR, Augustin S, Brang P (eds) Wald Im Klimawandel Grundlagen Für Adapt. Bundesamt für Umwelt BAFU Bern; Eidg. Forschungsanstalt WSL, Birmensdorf; Haupt, Bern, Stuttgart, Wien., pp 23–37

Rohner B, Waldner P, Lischke H, Ferretti M, Thürig E (2018) Predicting individual-tree growth of central European tree species as a function of site, stand, management, nutrient, and climate effects. Eur J For Res 137:29–44. https://doi.org/10.1007/s10342-017-1087-7

Rosenvald R, Lõhmus A, Kraut A, Remm L (2011) Bird communities in hemiboreal old-growth forests: the roles of food supply, stand structure, and site type. For Ecol Manag 262:1541–1550. https://doi.org/10.1016/j.foreco.2011.07.002

Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x

Schmucki E, Marty C, Fierz C, Weingartner R, Lehning M (2017) Impact of climate change in Switzerland on socioeconomic snow indices. Theor Appl Climatol 127:875–889. https://doi.org/10.1007/s00704-015-1676-7

Schuler LJ, Bugmann H, Snell RS (2016) From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale? Landsc Ecol 1–18. https://doi.org/10.1007/s10980-016-0422-6

Seidl R, Baier P, Rammer W, Schopf A, Lexer MJ (2007) Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecol Model 206:383–399. https://doi.org/10.1016/j.ecolmodel.2007.04.002

Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220. https://doi.org/10.1016/j.foreco.2008.04.002

Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x

Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–810. https://doi.org/10.1038/nclimate2318

Stadelmann G, Herold A, Didion M, Vidondo B, Gomez A, Thürig E (2016) Holzerntepotenzial im Schweizer Wald: simulation von Bewirtschaftungsszenarien. Schweiz Z Forstwes 167:152–161. https://doi.org/10.3188/szf.2016.0152

Stadelmann G, Temperli C, Rohner B, Didion M, Herold A, Rösler E, Thürig E (2019) Presenting MASSIMO: a management scenario simulation model to project growth, harvests and carbon dynamics of Swiss forests. Forests 10:94. https://doi.org/10.3390/f10020094

Stierlin HR, Zinggeler J (2001) Terrestrial inventory. In: Brassel P, Lischke H (eds) Swiss Natl. For. Inventory Methods Models Second Assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 65–87
Stroheker S, Forster B, Queloz V (2020) Zweithöchster je registrierter Buchdruckerbefall (Ips typographus) in der Schweiz. Waldschutz Aktuell. Eidg. Forschungsanstalt WSL, Birmensdorf

Svoboda M, Pouska V (2008) Structure of a central-European mountain spruce old-growth forest with respect to historical development. For Ecol Manag 255:2177–2188. https://doi.org/10.1016/j.foreco.2007.12.031

Taverna R, Gautschi M, Hofer P (2016) Das nachhaltig verfügbare Holznutzungspotenzial im Schweizer Wald. Schweiz Z Forstwes 167:162–171. https://doi.org/10.3188/szf.2016.0162

Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077. https://doi.org/10.1890/12-0210.1

Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. https://doi.org/10.1890/12-1503.1

Temperli C, Stadelmann G, Thürig E, Brang P (2017a) Silvicultural strategies for increased timber harvesting in a Central European mountain landscape. Eur J For Res 136:493–509. https://doi.org/10.1007/s10342-017-1048-1

Temperli C, Stadelmann G, Thürig E, Brang P (2017b) Timber mobilization and habitat tree retention in low-elevation mixed forests in Switzerland: an inventory-based scenario analysis of opportunities and constraints. Eur J For Res 136:711–725. https://doi.org/10.1007/s10342-017-1067-y

Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781. https://doi.org/10.1111/brv.12193

Thom D, Rammer W, Seidl R (2017) Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Chang Biol 23:269–282. https://doi.org/10.1111/gcb.13506

Thürig E, Kaufmann E (2010) Increasing carbon sinks through forest management: a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps. Eur J For Res 129:563–572. https://doi.org/10.1007/s10342-010-0354-7

Thürig E, Kaufmann E, Frisullo R, Bugmann H (2005a) Evaluation of the growth function of an empirical forest scenario model. For Ecol Manag 204:53–68. https://doi.org/10.1016/j.foreco.2004.07.070

Thürig E, Palosuo T, Bucher J, Kaufmann E (2005b) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For Ecol Manag 210:337–350. https://doi.org/10.1016/j.foreco.2005.02.030

Traub B, Meile R, Speich S, Rösler E (2017) The data storage and analysis system of the Swiss National Forest Inventory. Comput Electron Agric 132:97–107. https://doi.org/10.1016/j.compag.2016.11.016

Vacchiano G, Derose RJ, Shaw JD, Svoboda M, Motta R (2013) A density management diagram for Norway spruce in the temperate European montane region. Eur J For Res 132:535–549. https://doi.org/10.1007/s10342-013-0694-1

Valinger E, Fridman J (2011) Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For Ecol Manag 262:398–403. https://doi.org/10.1016/j.foreco.2011.04.004

Winter S, Möller GC (2008) Microhabitats in lowland beech forests as monitoring tool for nature conservation. For Ecol Manag 255:1251–1261. https://doi.org/10.1016/j.foreco.2007.10.029

Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468

Yousefpour R, Hanewinkel M (2014) Balancing decisions for adaptive and multipurpose conversion of Norway spruce (Picea abies L. karst) monocultures in the Black Forest area of Germany. For Sci 60:73–84. https://doi.org/10.5849/forsci.11-125

Yousefpour R, Temperli C, Jacobsen JB, Thorsen BJ, Meilby H, Lexer MJ, Lindner M, Bugmann H, Borges JG, Palma JHN, Ray D, Zimmermann NE, Delzon S, Kremer A, Kramer K, Reyer CPO, Lasch-Born P, Garcia-Gonzalo J, Hanewinkel M (2017) A framework for modeling adaptive forest management and decision making under climate change. Ecol Soc. https://doi.org/10.5751/ES-09614-220440

Yousefpour R, Augustynczik ALD, Reyer CPO, Lasch-Born P, Suckow F, Hanewinkel M (2018) Realizing mitigation efficiency of European commercial forests by climate smart forestry. Sci Rep 8:345. https://doi.org/10.1038/s41598-017-18778-w

Zell J, Rohner B, Thürig E, Stadelmann G (2019) Modeling ingrowth for empirical forest prediction systems. For Ecol Manag 433:771–779. https://doi.org/10.1016/j.foreco.2018.11.052

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 July 2019
Accepted: 02 April 2020
Published: 26 April 2020
Issue date: September 2020

Copyright

© The Author(s) 2020.

Acknowledgements

Acknowledgements

We thank Oliver Jakoby for inspiring discussions on calculating disturbance predisposition indices, Steffen Hermann for providing estimates on deadwood decomposition and two anonymous reviewers for their valuable comments on an earlier version of the manuscript.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return