Journal Home > Volume 6 , Issue 4
Background

Forest residues can be a feasible alternative for converting energy into fuels, electricity, or heat. Compared to other second-generation bioenergy sources, they do not compete for food, are relatively cheap, abundant in forest-rich areas, and more importantly their energy balance is close to zero. Biomass estimations can help design energy strategies to reduce fossil fuels dependency. Because of the land property distribution in Mexico, biomass estimations should consider not only the physical availability, but also the willingness of landowners to extract such raw materials.

Methods

This study presents a methodological approach for evaluating the potential use of forest residues as a feedstock to generate bioenergy in northern Mexico. Remote sensing and field forest inventory were used to estimate the quantity and distribution of forest residues. In addition, a discrete choice analysis evaluated landowners' preferences towards bioenergy development, including the most important factors that influence their willingness to extract their products and the expected price.

Results and conclusions

Considering both physical and socio-economic aspects, results showed that about 59, 000 metric tons per year could be available in the study area. The vast majority of landowners surveyed are willing to extract forest residues, as long as they are presented with extraction plans with the highest income. However, many showed concerns about the environmental impacts this activity can have on soils, plants, and fauna. These results can help evaluate the potential of these resources for bioenergy development.


menu
Abstract
Full text
Outline
About this article

A technical and socioeconomic approach to estimate forest residues as a feedstock for bioenergy in northern Mexico

Show Author's information Guadalupe Carrasco-DiazGustavo Perez-Verdin( )Jonathan Escobar-FloresMarco Antonio Marquez-Linares
Instituto Politecnico Nacional, CIIDIR Dgo. Sigma 119, Fracc. 20 de Nov. Ⅱ., Durango, Mexico

Abstract

Background

Forest residues can be a feasible alternative for converting energy into fuels, electricity, or heat. Compared to other second-generation bioenergy sources, they do not compete for food, are relatively cheap, abundant in forest-rich areas, and more importantly their energy balance is close to zero. Biomass estimations can help design energy strategies to reduce fossil fuels dependency. Because of the land property distribution in Mexico, biomass estimations should consider not only the physical availability, but also the willingness of landowners to extract such raw materials.

Methods

This study presents a methodological approach for evaluating the potential use of forest residues as a feedstock to generate bioenergy in northern Mexico. Remote sensing and field forest inventory were used to estimate the quantity and distribution of forest residues. In addition, a discrete choice analysis evaluated landowners' preferences towards bioenergy development, including the most important factors that influence their willingness to extract their products and the expected price.

Results and conclusions

Considering both physical and socio-economic aspects, results showed that about 59, 000 metric tons per year could be available in the study area. The vast majority of landowners surveyed are willing to extract forest residues, as long as they are presented with extraction plans with the highest income. However, many showed concerns about the environmental impacts this activity can have on soils, plants, and fauna. These results can help evaluate the potential of these resources for bioenergy development.

Keywords: Remote sensing, Bioenergy, Choice experiments, Forest landowners, Forest residues

References(51)

Aguilar FX, Cai Z, Amato AWD. 2014. Non-industrial private forest owner's willingness- to-harvest: how higher timber prices influence woody biomass supply. Biomass Bioenergy, 71:202-215. https://doi.org/10.1016/j.biombioe.2014.10.006

Alemán-Nava GS, Meneses-Jacome A, Cardenas-Chavez DL, Diaz-Chavez R, Scarlat N, Dallemand JF, Ornelas-Soto N, Garcia-Arrazola R, Parra R. 2015. Bioenergy in Mexico: status and perspective. Biofuels Bioprod Biorefin, 9:8-20. https://doi.org/10.1002/bbb.1523

Bergtold JS, Fewell J, Williams J. 2014. Farmers' willingness to produce alternative cellulosic biofuel feedstocks under contract in Kansas using stated choice experiments. Bioen Res, 7:876-884. https://doi.org/10.1007/s12155-014-9425-9

Boudreau J, Nelson RF, Margolis HA, Beaudoin A, Guindon L, Kimes DS. 2008. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens Environ, 112:3876-3890. doi: https://doi.org/10.1016/j.rse.2008.06.003

Breiman L. 2001. Random forests. Mach Learn, 45:5-32. https://doi.org/10.1023/a:1010933404324

Chuck-Hernández C, Pérez-Carrillo E, Heredia-Olea E, Serna-Saldívar SO. 2011. Sorgo como un cultivo multifacético para la producción de bioetanol en México: Tecnologías, avances y áreas de oportunidad. Revista mexicana de ingeniería química, 10:529-549

Fagern?s L, Brammer J, Wilén C, Lauer M, Verhoeff F. 2010. Drying of biomass for second generation synfuel production. Biomass Bioenergy, 34:1267-1277. https://doi.org/10.1016/j.biombioe.2010.04.005

Fonseca GW, Alice F, Rey JM. 2009. Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque, 30:36-47. https://doi.org/10.4067/S0717-92002009000100006

Fraver S, Ducey MJ, Woodall CW, D'Amato AW, Milo AM, Palik BJ. 2018. Influence of transect length and downed woody debris abundance on precision of the line-intersect sampling method. For Ecosyst, 5:39. https://doi.org/10.1186/s40663-018-0156-9

González-Elizondo MS, González-Elizondo M, Márquez-Linares MA. 2007. Vegetación y ecorregiones de Durango. Plaza y Valdés Editores-Instituto Politécnico Nacional. Mexico, D.F

González-Elizondo MS, González-Elizondo M, Tena-Flores JA, Ruacho-González L, López-Enríquez I. 2012. Vegetación de la sierra madre occidental, México: Una síntesis. Acta Bot Mexic, 100:351-404

Grebner DL, Perez-Verdin G, Sun C, Munn IA, Schultz EB, Matney TG. 2008. Woody biomass feedstock availability, production costs and implications for bioenergy conversion in Mississippi. Renewable Energy from Forest Resources in the United States. https://doi.org/10.4324/9780203888421

Gruchy SR, Grebner DL, Munn IA, Joshi O, Hussain A. 2012. An assessment of nonindustrial private forest landowner willingness to harvest woody biomass in support of bioenergy production in Mississippi: a contingent rating approach. Forest Policy Econom, 15:140-145. https://doi.org/10.1016/j.forpol.2011.09.007

Hanley N, Wright RE, Adamowicz V. 1998. Using choice experiments to value the environment: design issues, current experience and future prospects. Environ Res Econ, 11:413-428

Hastie T, Tibshirani R, Friedmand J. 2009. The elements of statistical learning: data mining, inference, and prediction. Springer, Second Edition

Heute A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric performance of the MODIS vegetation indices. Remot Sens Environ, 83:195-213

Hjerpe E, Hussain A, Phillips S. 2015. Valuing type and scope of ecosystem conservation: a meta-analysis. J Forest Econom, 21:32-50. https://doi.org/10.1016/j.jfe.2014.12.001

Hochman G, Rajagopal D, Timilsina G, Zilberman D. 2014. Quantifying the causes of the global food commodity price crisis. Biomass Bioenergy, 68:106-114. https://doi.org/10.1016/j.biombioe.2014.06.012

Holmes TP, Adamowicz WL. 2003. Attribute-based methods. In: Champ PA, Boyle KJ, Brown TC (eds) A primer on nonmarket valuation Kluger academic publishers. Norwell, MA, pp 171-219https://doi.org/10.1007/978-94-007-0826-6_6
DOI
Honorato-Salazar JA. 2017. Caracterizacion fisico-quimica de materiales lignocelulósicos. Fondo sectorial SENER-CONACYT Sustentabilidad Energética. INIFAP, Puebla, Pueb, p 60

Horne P, Boxall PC, Adamowicz WL. 2005. Multiple-use management of forest recreation sites: a spatially explicit choice experiment. Forest Ecol Manag, 207:189-199. https://doi.org/10.1016/j.foreco.2004.10.026

Hueso-González P, Martínez-Murillo JF, Ruiz-Sinoga JD. 2018. Benefits of adding forestry clearance residues for the soil and vegetation of a Mediterranean mountain forest. Sci Total Environ, 615:796-804. https://doi.org/10.1016/j.scitotenv.2017.09.301

Joshi O, Grebner DL, Munn IA, Hussain A, Gruchy SR. 2013. Understanding landowner preferences for woody biomass harvesting: a choice experiment-based approach. For Sci, 59:549-558

Khanna M, Louviere J, Yang X. 2017. Motivations to grow energy crops: the role of crop and contract attributes. Agric Econom (UK), 48:263-277. https://doi.org/10.1111/agec.12332

Lopez MJ, Ramirez N. 2004. Composición florística y abundancia de las especies en un remanente de bosque deciduo secundario. Acta Biol Venez, 24(2):29-71

López-Miranda J, Soto-Cruz NO, Rutiaga-Quiñones OM, Medrano-Roldán H, Arévalo-Niño K. 2009. Optimización del proceso de obtención enzimática de azúcares fermentables a partir de aserrín de pino. Rev Int Contam Ambient, 25:95-102

McFadden D. 1973. Conditional logit analysis of qualitative choice behavior. Front Econom:105-142. https://doi.org/10.1108/eb028592

Mogas J, Riera P, Bennett J. 2006. A comparison of contingent valuation and choice modelling with second-order interactions. J Forest Econom, 12:5-30. https://doi.org/10.1016/j.jfe.2005.11.001

Návar J. 2009. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag, 257:427-434. https://doi.org/10.1016/j.foreco.2008.09.028

Ngugi MR, Neldner VJ, Ryan S, Lewis T, Li JR, Norman P, Mogilski M. 2018. Estimating potential harvestable biomass for bioenergy from sustainably managed private native forests in Southeast Queensland, Australia. For Ecosyst, 5:6. https://doi.org/10.1186/s40663-018-0129-z

Pérez-Fernández A, Rivas-Martínez MI, Caamal-Cauich I, Martínez-Luis D. 2017. La producción de bioetanol y su impacto en el precio de productos agrícolas en México. Ecosistemas y Recursos Agropecuarios, 4:597-602

Perez-Verdin G, Navar-Chaidez JJ, Grebner DL, Soto-Alvarez CE. 2012. Disponibilidad y costos de producción de biomasa forestal como materia prima para la producción de bioetanol. Forest Systems, 21:526-537. doi:https://doi.org/10.5424/fs/2012213-02636

Perlack RD, Wright LL, Turhollow AF, Graham RL. 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. U.S. Department of Energy, Oak Ridge, TNhttps://doi.org/10.2172/1216415
DOI

Pukkala T. 2018. Carbon forestry is surprising. For Ecosyst, 5:11. https://doi.org/10.1186/s40663-018-0131-5

QGIS. 2016. Quantum geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

Rodriguez-Soalleiro R, Eimil-Fraga C, Gomez-Garcia E, Garcia-Villabrille JD, Rojo-Alboreca A, Munoz F, Oliveira N, Sixto H, Perez-Cruzado C. 2018. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. For Ecosyst, 5:35. https://doi.org/10.1186/s40663-018-0154-y

Rojas-García F, De Jong BHJ, Martínez-Zurimendí P, Paz-Pellat F. 2015. Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Ann Forest Sci, 72:835-864. https://doi.org/10.1007/s13595-015-0456-y

Ruiz HA, Martínez A, Vermerris W. 2016. Bioenergy potential, energy crops, and biofuel production in Mexico. Bioen Res, 9:981-984. https://doi.org/10.1007/s12155-016-9802-7

Sanchez FG, Carter EA, Klepac JF. 2003. Enhancing the soil organic matter pool through biomass incorporation. Biomass Bioenergy, 24:13

Schlegel B, Gayoso J, Guerra J. 2000. Manual de procedimientos muestreos de biomasa forestal. Universidad Austral De Chile, Chile
SENER. 2017. Balance Nacional de Energia. Secretaria de Energía (SENER) https: //www.gob.mx/cms/uploads/attachment/file/414843/Balance_Nacional_de_Energ_a_2017.pdf.
Soliño-Millán M, Vázquez-Rodríguez M, Prada-Blanco A. 2008. Consistencia en experimentos de elección: aplicación a la valorización eléctrica de la biomasa forestal en Espa?a. http://wwwuibcongresorg/imgdb/archivo_dpo4091pdf Assessed 07 Jan 2019

Solomon BD. 2010. Biofuels and sustainability. Ann N Y Acad Sci, 1185:119-134. https://doi.org/10.1111/j.1749-6632.2009.05279.x

Susaeta A, Alavalapati J, Mercer E. 2010. Assessing public preferences for forest biomass based energy in the southern United States. Environ Manag, 45:697-710. https://doi.org/10.1007/s00267-010-9445-y

Susaeta A, Lal P, Alavalapati J, Mercer E. 2011. Random preferences towards bioenergy environmental externalities: a case study of woody biomass based electricity in the southern United States. Energy Econom, 33:1111-1118. https://doi.org/10.1016/j.eneco.2011.05.015

UAF. 2015. Estudio De Cuenca De Abasto Umafores 1004 Topia-Canelas Y 1005 Santiago Papasquiaro, Dgo. Unidad de Admnistracion Forestal Santiago Papasquiaro
USGS. 2018. United States Geological Service Global Visualization Viewer (GloVis). https: //glovis.usgs.gov/.
Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, álvarez-González JG. 2017. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North- Western Mexico. Forests. https: //doi.org/10.3390/f8080269https://doi.org/10.20944/preprints201705.0178.v1
DOI

Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN. 2008. Plants to power: bioenergy to fuel the future. Trend Plant Sci, 13:421-429. https://doi.org/10.1016/j.tplants.2008.06.001

Zhu XG, Long SP, Ort DR. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol, 19:153-159. https://doi.org/10.1016/j.copbio.2008.02.004

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 January 2019
Accepted: 11 September 2019
Published: 19 October 2019
Issue date: December 2019

Copyright

© The Author(s) 2019.

Acknowledgements

Acknowledgements

We would like to thank CONAFOR for allowing us to use the Forest Inventory database. Many thanks to the landowners who participated in the surveys, as well as the forest consulting units of Santiago Papasquiaro and Topia.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return