Journal Home > Volume 6 , Issue 3
Background

Prescribed burning is a common practice of site preparation before afforestation in subtropical forests. However, the effects of prescribed burning on carbon (C) dynamics of an ecosystem are poorly understood. Therefore, a Eucalyptus urophylla plantation (EU) and a naturally recovered shrubland (NS), each treated with prescribed burning and no burning were examined in subtropical China.

Methods

Biomass of trees and shrubs in the 1st, 3nd, 4th, and 6th year after treatments were estimated by quadrat survey and allometric equations. Biomass of herbs and forest floors were estimated by harvest method. Plant biomass C storage was calculated by plant biomass multiplying by its C concentration. Soil organic C (SOC) storage in the 6th year after treatments was estimated by SOC concentration multiplying by soil bulk density and soil volumes.

Results

Tree biomass C storage was significantly higher in the burned EU (BEU) than in the unburned EU (UEU) in the 1st year after treatments, yet the difference decreased over time. Conversely, tree biomass C storage was lower in the burned NS (BNS) than in the unburned NS (UNS), although the difference was not significant. However, in the 6th year after treatments, the total plant biomass C storage was 14.56% higher in the BEU than that in the UEU, and 59.93% higher in the BNS than that in the UNS, respectively, although the significant difference was only found between UNS and BNS. In addition, neither SOC storage at 0–20 cm nor ecosystem C storage in either the EU or NS was significantly affected by prescribed burning.

Conclusions

Prescribed burning has little impact on overall C storage of forest ecosystems, we consider that prescribed burning may be an option for forest site preparation regarding plant biomass C accumulation.


menu
Abstract
Full text
Outline
About this article

Effects of prescribed burning on carbon accumulation in two paired vegetation sites in subtropical China

Show Author's information Yuanqi Chen1,2,3Jianbo Cao2,4Lixia Zhou2Feng Li2,4Shenglei Fu5( )
Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan 411201, China
Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, College of Hunan Province, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
University of Chinese Academy of Sciences, Beijing 100049, China
Key laboratory of Geospatial Technology for the Middle & Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China

Abstract

Background

Prescribed burning is a common practice of site preparation before afforestation in subtropical forests. However, the effects of prescribed burning on carbon (C) dynamics of an ecosystem are poorly understood. Therefore, a Eucalyptus urophylla plantation (EU) and a naturally recovered shrubland (NS), each treated with prescribed burning and no burning were examined in subtropical China.

Methods

Biomass of trees and shrubs in the 1st, 3nd, 4th, and 6th year after treatments were estimated by quadrat survey and allometric equations. Biomass of herbs and forest floors were estimated by harvest method. Plant biomass C storage was calculated by plant biomass multiplying by its C concentration. Soil organic C (SOC) storage in the 6th year after treatments was estimated by SOC concentration multiplying by soil bulk density and soil volumes.

Results

Tree biomass C storage was significantly higher in the burned EU (BEU) than in the unburned EU (UEU) in the 1st year after treatments, yet the difference decreased over time. Conversely, tree biomass C storage was lower in the burned NS (BNS) than in the unburned NS (UNS), although the difference was not significant. However, in the 6th year after treatments, the total plant biomass C storage was 14.56% higher in the BEU than that in the UEU, and 59.93% higher in the BNS than that in the UNS, respectively, although the significant difference was only found between UNS and BNS. In addition, neither SOC storage at 0–20 cm nor ecosystem C storage in either the EU or NS was significantly affected by prescribed burning.

Conclusions

Prescribed burning has little impact on overall C storage of forest ecosystems, we consider that prescribed burning may be an option for forest site preparation regarding plant biomass C accumulation.

Keywords: Forest management, Prescribed fire, Reforestation, Plant biomass carbon, Soil organic carbon

References(60)

Alcañiz M, Outeiro L, Francos M, Farguell J, Úbeda X (2016) Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí massif, Catalonia, Spain). Sci Total Environ 572:1329-1335

Alcañiz M, Outeiro L, Francos M, Úbeda X (2018) Effects of prescribed fires on soil properties: a review. Sci Total Environ 613:944-957

Armas-Herrera CM, Martí C, Badía D, Ortiz-Perpiñá O, Girona-García A, Porta J (2016) Immediate effects of prescribed burning in the Central Pyrenees on the amount and stability of topsoil organic matter. Catena 147:238-244

Balch JK, Brando PM, Nepstad DC, Coe MT, Silvério D, Massad TJ, Davidson EA, Lefebvre P, Oliveira-Santos C, Rocha W, Cury RT, Parsons A, Carvalho KS (2015) The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. Bioscience 65:893-905

Bataineh AL, Oswald BP, Bataineh MM, Williams HM, Coble DW (2006) Changes in understory vegetation of a ponderosa pine forest in northern Arizona 30 years after a wildfire. For Ecol Manag 235:283-294

Butler OM, Lewis T, Chen C (2017) Prescribed fire alters foliar stoichiometry and nutrient resorption in the understory of a subtropical eucalypt forest. Plant Soil 410:181-191

Carter MC, Foster CD (2004) Prescribed burning and productivity in southern pine forests: a review. For Ecol Manag 191:93-109

Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1-10

Chen Y, Liu Z, Rao X, Wang X, Liang C, Lin Y, Zhou L, Cai X, Fu S (2015) Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdong, China. Forests 6:794-808

Chen Y, Yu S, Liu S, Wang X, Zhang Y, Liu T, Zhou L, Zhang W, Fu S (2017) Reforestation makes a minor contribution to soil carbon accumulation in the short term: evidence from four subtropical plantations. For Ecol Manag 384:400-405

Chen Z, Chen Z, Yan X, Bai L (2016) Stoichiometric mechanisms of Dicranopteris dichotoma growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China. Plant Soil 398:367-379

China Forestry Database.(n.d.) Statistic data of the 8th national forest resources continuous inventory. http://124.205.185.8/lysjk/indexJump.do?url=view/moudle/dataQuery/dataQuery. Accessed 20 Mar 2018
China Science Daily (2015) International Union of Forestry Research Organization Eucalypt Conference 2015. China science Daily the, 4th edn section, 26 Oct 2015 (In Chinese)

Close DC, Davidson NJ, Swanborough PW, Corkrey R (2011) Does low-intensity surface fire increase water-and nutrient-availability to overstorey Eucalyptus gomphocephala? Plant Soil 349:203-214

Espinosa J, Madrigal J, De La Cruz AC, Guijarro M, Jimenez E, Hernando C (2018) Short-term effects of prescribed burning on litterfall biomass in mixed stands of Pinus nigra and Pinus pinaster and pure stands of Pinus nigra in the Cuenca Mountains (central-eastern Spain). Sci Total Environ 618:941-951

Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW (2010) Forest carbon storage: ecology management and policy. Front Ecol Environ 8:245-252

Fischer M, Kelley AM, Ward EJ, Boone JD, Ashley EM, Domec JC, Williamson JS, King JS (2017) A critical analysis of species selection and high vs low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems. Biomass Bioenergy 98:214-227

Fontúrbel MT, Fernández C, Vega JA (2016) Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: mid-term soil microbial response. Appl Soil Ecol 107:334-346

Fultz LM, Moore-Kucera J, Dathe J, Davinic M, Perry G, Wester D, Schwilk DW, Rideout-Hanzak S (2016) Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: two case studies in the semi-arid southwest. Appl Soil Ecol 99:118-128

Gautam TP, Mandal TN (2016) Effect of disturbance on biomass, production and carbon dynamics in moist tropical forest of eastern Nepal. For Ecosyst 3:11

Glitzenstein JS, Streng DR, Masters RE, Robertson KM, Hermann SM (2012) Fire-frequency effects on vegetation in North Florida pinelands: another look at the long-term Stoddard fire research plots at tall timbers research station. For Ecol Manag 264:197-209

Granged AJ, Jordán A, Zavala LM, Muñoz-Rojas M, Mataix-Solera J (2011) Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 167:125-134

Guo L, Wu G, Li Y, Li C, Liu W, Meng J, Liu H, Yu X, Jiang G (2016) Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter bulk density and earthworm activity in a wheat-maize rotation system in eastern China. Soil Tillage Res 156:140-147

Hall JV, Loboda TV, Giglio L, McCarty GW (2016) A MODIS-based burned area assessment for Russian croplands: mapping requirements and challenges. Remote Sens Environ 184:506-521

Hamman ST, Burke IC, Knapp EE (2008) Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest. For Ecol Manag 256:367-374

Holden SR, Gutierrez A, Treseder KK (2013) Changes in soil fungal communities extracellular enzyme activities and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16:34-46

Houdeshell H, Friedrich RL, Philpott SM (2011) Effects of prescribed burning on ant nesting ecology in oak savannas. Am Midl Nat 166:98-111

Hu H, Hu T, Sun L (2016) Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the greater Xing'an mountains China. J For Res 27:1153-1162

Jiang X, Dou R, Yu S, Ma Y (2012) Leaf litter decomposition subtropical plants with different origin time in the south subtropical Asia. J Anhui Agric Sci 40:12054-12058 (in Chinese with an English Abstract)

Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116-126

Kim DG, Taddese H, Belay A, Kolka R (2016) The impact of traditional fire management on soil carbon and nitrogen pools in a montane forest southern Ethiopia. Int J Wildland Fire 25:1110-1116

Krishnaraj SJ, Baker TG, Polglase PJ, Volkova L, Weston CJ (2016) Prescribed fire increases pyrogenic carbon in litter and surface soil in lowland eucalyptus forests of South-Eastern Australia. For Ecol Manag 366:98-105

Landry JS, Matthews HD, Ramankutty N (2015) A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Clim Chang 133:179-192

Lu RK (1999) Method of analysis in soil and agrochemistry. Agricultural Press, Beijing, pp 31-33 (in Chinese)

Lutz JA, Matchett JR, Tarnay LW, Smith DF, Becker KM, Furniss TJ, Brooks ML (2017) Fire and the distribution and uncertainty of carbon sequestered as aboveground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks. Land 6:10

Ma YD, Jiang H, Yu SQ, Dou RP, Guo PP, Wang B (2009) Leaf litter decomposition of plants with different origin time in the mid-subtropical China. Acta Ecol Sin 29:5237-5245 (in Chinese with an English Abstract)

Marín-Spiotta E, Sharma S (2013) Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Ecol Biogeogr 22:105-117

Muqaddas B, Chen C, Lewis T, Wild C (2016) Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. For Ecol Manag 382:110-119

Neill C, Patterson WA, Crary DW (2007) Responses of soil carbon nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For Ecol Manag 250:234-243

North MP, Hurteau MD (2011) High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest. For Ecol Manag 261:1115-1120

Pellegrini AF, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194-198

Pellegrini AF, Hedin LO, Staver AC, Govender N (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96:1275-1285

Prévosto B, Bousquet-Mélou A, Ripert C, Fernandez C (2011) Effects of different site preparation treatments on species diversity composition and plant traits in Pinus halepensis woodlands. Plant Ecol 212:627-638

Quality and Technology Supervision of Hainan Province, China (2004) The technical specification on fast growing high yield and short rotation of eucalyptus plantation. DB46/T 32-2004 (in Chinese)

Rau BM, Johnson DW, Blank RR, Chambers JC (2009) Soil carbon and nitrogen in a Great Basin pinyon-juniper woodland: influence of vegetation burning and time. J Arid Environ 73:472-479

Roaldson LM, Johnson DW, Miller WW, Murphy JD, Walker RF, Stein CM, Glass DW, Blank RR (2014) Prescribed fire and timber harvesting effects on soil carbon and nitrogen in a pine forest. Soil Sci Soc Am J 78:S48-S57

Santos AJB, Silva GTDA, Miranda HS, Miranda AC, Lloyd J (2003) Effects of fire on surface carbon energy and water vapour fluxes over campo sujo savanna in Central Brazil. Funct Ecol 17:711-719

Sawyer R, Bradstock R, Bedward M, Morrison RJ (2018) Fire intensity drives post-fire temporal pattern of soil carbon accumulation in Australian fire-prone forests. Sci Total Environ 610:1113-1124

Scharenbroch BC, Nix B, Jacobs KA, Bowles ML (2012) Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern USA oak (Quercus) forest. Geoderma 183:80-91

Scheller RM, Van Tuyl S, Clark KL, Hom J, La Puma I (2011) Carbon sequestration in the New Jersey pine barrens under different scenarios of fire management. Ecosystems 14:987

Shorohova E, Kapitsa E, Vanha-Majamaa I (2008) Decomposition of stumps in a chronosequence after clear-felling vs clear-felling with prescribed burning in a southern boreal forest in Finland. For Ecol Manag 255:3606-3612

State Forestry Bureau (2014) The eighth forest resources inventory main results (2009-2013). http://www.forestry.gov.cn/main/65/20140225/659670.html. Accessed 20 Mar 2018

Sun Y, Wu J, Shao Y, Zhou L, Mai B, Lin Y, Fu S (2011) Responses of soil microbial communities to prescribed burning in two paired vegetation sites in southern China. Ecol Res 26:669-677

Sun Y, Wu J, Zhou L, Lin Y, Fu S (2009) Change of soil nutrient contents after prescribed burning of forestland in Heshan. Chin J Appl Ecol 20:513-517 (in Chinese with English abstract)

Wang F, Li J, Zou B, Xu X, Li Z (2013) Effect of prescribed fire on soil properties and N transformation in two vegetation types in South China. Environ Manag 51:1164

Wang H, Liu S, Mo J, Wang J, Makeschin F, Wolff M (2010) Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecol Res 25:1071-1079

Wang J, Wang H, Fu X, Xu M, Wang Y (2016) Effects of site preparation treatments before afforestation on soil carbon release. For Ecol Manag 361:277-285

Williams RJ, Hallgren SW, Wilson GW (2012) Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For Ecol Manag 265:241-247

Zhou H, Meng S, Liu Q (2016) Diameter growth biological rotation age and biomass of Chinese fir in burning and clearing site preparations in subtropical China. Forests 7:177

Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q (2016) Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Ann Bot 117:497-506

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 December 2018
Accepted: 18 April 2019
Published: 13 May 2019
Issue date: September 2019

Copyright

© The Author(s) 2019.

Acknowledgements

Acknowledgements

We are very grateful to all members of Heshan National Field Research Station of Forest Ecosystem, who helped setting up the quadrats and investigating vegetation.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return