Journal Home > Volume 5 , Issue 3
Background

Remote sensing-based mapping of forest Ecosystem Service (ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize the land use in subsequent decision analyses. However, the mapping is often based on readily available data, such as land cover maps and other publicly available databases, and ignoring the related uncertainties.

Methods

This study tested the potential to improve the robustness of the decisions by means of local model fitting and uncertainty analysis. The quality of forest land use prioritization was evaluated under two different decision support models: either using the developed models deterministically or in corporation with the uncertainties of the models.

Results

Prediction models based on Airborne Laser Scanning (ALS) data explained the variation in proxies of the suitability of forest plots for maintaining biodiversity, producing timber, storing carbon, or providing recreational uses (berry picking and visual amenity) with RMSEs of 15%–30%, depending on the ES. The RMSEs of the ALS-based predictions were 47%–97% of those derived from forest resource maps with a similar resolution. Due to applying a similar field calibration step on both of the data sources, the difference can be attributed to the better ability of ALS to explain the variation in the ES proxies.

Conclusions

Despite the different accuracies, proxy values predicted by both the data sources could be used for a pixel-based prioritization of land use at a resolution of 250 m2, i.e., in a considerably more detailed scale than required by current operational forest management. The uncertainty analysis indicated that maps of the ES provisioning potential should be prepared separately based on expected and extreme outcomes of the ES proxy models to fully describe the production possibilities of the landscape under the uncertainties in the models.


menu
Abstract
Full text
Outline
About this article

Predicting the provisioning potential of forest ecosystem services using airborne laser scanning data and forest resource maps

Show Author's information Jari Vauhkonen( )
Natural Resources Institute Finland (Luke), Bioeconomy and Environment Unit, P.O. Box 68, Yliopistokatu 6, FI-80101 Joensuu, Finland

Abstract

Background

Remote sensing-based mapping of forest Ecosystem Service (ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize the land use in subsequent decision analyses. However, the mapping is often based on readily available data, such as land cover maps and other publicly available databases, and ignoring the related uncertainties.

Methods

This study tested the potential to improve the robustness of the decisions by means of local model fitting and uncertainty analysis. The quality of forest land use prioritization was evaluated under two different decision support models: either using the developed models deterministically or in corporation with the uncertainties of the models.

Results

Prediction models based on Airborne Laser Scanning (ALS) data explained the variation in proxies of the suitability of forest plots for maintaining biodiversity, producing timber, storing carbon, or providing recreational uses (berry picking and visual amenity) with RMSEs of 15%–30%, depending on the ES. The RMSEs of the ALS-based predictions were 47%–97% of those derived from forest resource maps with a similar resolution. Due to applying a similar field calibration step on both of the data sources, the difference can be attributed to the better ability of ALS to explain the variation in the ES proxies.

Conclusions

Despite the different accuracies, proxy values predicted by both the data sources could be used for a pixel-based prioritization of land use at a resolution of 250 m2, i.e., in a considerably more detailed scale than required by current operational forest management. The uncertainty analysis indicated that maps of the ES provisioning potential should be prepared separately based on expected and extreme outcomes of the ES proxy models to fully describe the production possibilities of the landscape under the uncertainties in the models.

Keywords: Remote sensing, Light detection and ranging (LiDAR), Forestry decision making, Spatial prioritization

References(100)

Andrew ME, Wulder MA, Nelson TA (2014) Potential contributions of remote sensing to ecosystem service assessments. Progr Phys Geogr 38:328–353

Barber QE, Bater CW, Braid ACR, Coops NC, Tompalski P, Nielsen SE (2016) Airborne laser scanning for modelling understory shrub abundance and productivity. For Ecol Manag 377:46–54

Barbosa JM, Asner GP (2017) Prioritizing landscapes for restoration based on spatial patterns of ecosystem controls and plant–plant interactions. J Appl Ecol 54:1459–1468

Barredo JI, Bastrup-Birk A, Teller A, Onaindia M, de Manuel BF, Madariaga I, Rodriguez-Loinaz G, Pinho P, Nunes A, Ramos A, Batista M, Mimo S, Cordovil C, Branquinho C, Gret-Regamey A, Bebi P, Brunner SH, Weibel B, Kopperoinen L, Itkonen P, Viinikka A, Chirici G, Bottalico F, Pesola L, Vizzarri M, Garfi V, Antonello L, Barbati A, Corona P, Cullotta S, Giannico V, Lafortezza R, Lombardi F, Marchetti M, Nocentini S, Riccioli F, Travaglini D, Sallustio L, Rosario I, von Essen M, Nicholas KA, Maguas C, Rebelo R, Santos-Reis M, Santos-Martin F, Zorrilla-Miras P, Montes C, Benayas J, Martin-Lopez B, Snall T, Berglund H, Bengtsson J, Moen J, Busetto L, San-Miguel-Ayanz J, Thurner M, Beer C, Santoro M, Carvalhais N, Wutzler T, Schepaschenko D, Shvidenko A, Kompter E, Ahrens B, Levick SR, Schmullius C (2015) Mapping and assessment of forest ecosystems and their services – Applications and guidance for decision making in the framework of MAES. Report EUR 27751 EN, Joint Research Centre, European Union. doi: https://doi.org/10.2788/720519

Bässler C, Stadler J, Müller J, Förster B, Göttlein A, Brandl R (2011) LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodivers Conserv 20:465–481

Bottalico F, Travaglini D, Chirici G, Marchetti M, Marchi E, Nocentini S, Corona P (2014) Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by airborne laser scanning data. Eur J Remote Sens 47:437–460

Box GEP, Cox DR (1964) An analysis of transformations. J Royal Stat Soc Ser B 26:211–252

Brokaw N, Lent R (1999) Vertical structure. In: Hunter ML Jr (ed) Maintaining biodiversity in Forest ecosystems. Cambridge University Press, Cambridge, pp 373–399https://doi.org/10.1017/CBO9780511613029.013
DOI

Coops NC, Wulder MA, Culvenor DS, St-Onge B (2004) Comparison of forest attributes extracted from fine spatial resolution multispectral and lidar data. Can J Remote Sens 30:855–866

Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world's ecosystem services and natural capital. Nature 387:253–260

Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues Ecol 2:1–16

Davies AB, Asner GP (2014) Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol Evol 29:681–691

de Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Compl 7:260–272

Domingo-Santos JM, de Villarán RF, Rapp-Arrarás Í, de Provens ECP (2011) The visual exposure in forest and rural landscapes: an algorithm and a GIS tool. Landscape Urban Plan 101:52–58

Dueser RD, Shugart HH Jr (1978) Microhabitats in a forest-floor small mammal fauna. Ecology 59:89–98

Eigenbrod F, Armsworth PR, Anderson BJ, Heinemeyer A, Gillings S, Roy DB, Thomas CD, Gaston KJ (2010) The impact of proxy-based methods on mapping the distribution of ecosystem services. J Appl Ecol 47:377–385

Englund O, Berndes G, Cederberg C (2017) How to analyse ecosystem services in landscapes – a systematic review. Ecol Indic 73:492–504

Foody GM (2015) Valuing map validation: the need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services. Ecol Econ 111:23–28

Gopal S, Woodcock C (1994) Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogramm Eng Remote Sens 60:181–188

Hegetschweiler KT, Plum C, Fischer C, Brändli UB, Ginzler C, Hunziker M (2017) Towards a comprehensive social and natural scientific forest-recreation monitoring instrument – a prototypical approach. Landscape Urban Plan 167:84–97

Heinonen T, Kurttila M, Pukkala T (2007) Possibilities to aggregate raster cells through spatial optimization in forest planning. Silva Fenn 41:89–103

Henningsen A, Hamann JD (2007) Systemfit: a package for estimating systems of simultaneous equations in R. J Stat Softw 23(4):1–40

Hilker T, Frazer GW, Coops NC, Wulder MA, Newnham GJ, Stewart JD, van Leeuwen M, Culvenor DS (2013) Prediction of wood fiber attributes from LiDAR-derived forest canopy indicators. For Sci 59:231–242

Hill RA, Hinsley SA, Broughton RK (2014) Assessing habitats and organism-habitat relationships by airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser scanning. Managing Forest ecosystems, vol 27. Springer, Dordrecht, pp 335–356https://doi.org/10.1007/978-94-017-8663-8_17
DOI

Hou Z, Xu Q, Vauhkonen J, Maltamo M, Tokola T (2016) Species-specific combination and calibration between area-based and tree-based diameter distributions using airborne laser scanning. Can J For Res 46:753–765

Ihalainen M, Alho J, Kolehmainen O, Pukkala T (2002) Expert models for bilberry and cowberry yields in Finnish forests. For Ecol Manag 157:15–22

Kane VR, McGaughey RJ, Bakker JD, Gersonde RF, Lutz JA, Franklin JF (2010) Comparisons between field-and LiDAR-based measures of stand structural complexity. Can J For Res 40:761–773

Kangas A, Kangas J, Kurttila M (2008) Decision support for forest management. Managing forest ecosystems 16. Springer, Dordrecht

Kangas A, Leskinen P, Kangas J (2007) Comparison of fuzzy and statistical approaches in multicriteria decisionmaking. For Sci 53:37–44

Kangas J (1992) Multiple-use planning of forest resources by using the analytic hierarchy process. Scand J For Res 7:259–268

Kankare V, Vauhkonen J, Holopainen M, Vastaranta M, Hyyppä J, Hyyppä H, Alho P (2015) Sparse density, leaf-off airborne laser scanning data in aboveground biomass component prediction. Forests 6:1839–1857

Karjalainen T, Kellomäki S (1996) Greenhouse gas inventory for land use change and forestry in Finland based on international guidelines. Mitig Adapt Strat Glob Change 1:51–71

Kohler M, Devaux C, Grigulis K, Leitinger G, Lavorel S, Tappeiner U (2017) Plant functional assemblages as indicators of the resilience of grassland ecosystem service provision. Ecol Indic 73:118–127

Koivuniemi J, Korhonen KT (2006) Inventory by compartments. In: Kangas A, Maltamo M (eds) Forest inventory: methodology and applications. Managing Forest ecosystems, vol 10. Springer, Dordrecht, pp 271–278https://doi.org/10.1007/1-4020-4381-3_16
DOI

Korhonen L, Korpela I, Heiskanen J, Maltamo M (2011) Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens Environ 115:1065–1080

Korhonen L, Peuhkurinen J, Malinen J, Suvanto A, Maltamo M, Packalén P, Kangas J (2008) The use of airborne laser scanning to estimate sawlog volumes. Forestry 81:499–510

Korpela I, Hovi A, Morsdorf F (2012) Understory trees in airborne LiDAR data - selective mapping due to transmission losses and echo-triggering mechanisms. Remote Sens Environ 119:92–104

Kotamaa E, Tokola T, Maltamo M, Packalén P, Kurttila M, Mäkinen A (2010) Integration of remote sensing-based bioenergy inventory data and optimal bucking for stand-level decision making. Eur J For Res 129:875–886

Lämås T, Sandström E, Jonzén J, Olsson H, Gustafsson L (2015) Tree retention practices in boreal forests: what kind of future landscapes are we creating? Scand J For Res 30:526–537

Lefsky MA, Cohen WB, Spies TA (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can J For Res 31:78–87

Lehtomäki J, Tuominen S, Toivonen T, Leinonen A (2015) What data to use for forest conservation planning? A comparison of coarse open and detailed proprietary forest inventory data in Finland. PLoS One. https://doi.org/10.1371/journal.pone.0135926
DOI

Leiterer R, Furrer R, Schaepman ME, Morsdorf F (2015) Forest canopy-structure characterization: a data-driven approach. For Ecol Manag 358:48–61

Liang X, Hyyppä J, Matikainen L (2007) Deciduous-coniferous tree classification using difference between first and last pulse laser signatures. In: Rönnholm P, Hyyppä H, Hyyppä J (eds) Proceedings of ISPRS workshop on laser scanning 2007 and SilviLaser 2007. Int arch Photogramm remote Sens, vol XXXVI, part 3/W52, pp 253–257

Listopad CM, Masters RE, Drake J, Weishampel J, Branquinho C (2015) Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecol Indic 57:268–279

Luther JE, Skinner R, Fournier RA, van Lier OR, Bowers WW, Coté JF, Hopkinson C, Moulton T (2014) Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data. Forestry 87:313–326

MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

Malczewski J, Rinner C (2015) Multicriteria decision analysis geographic information science. Advances in Geographic Information Science Springer-Verlag, Berlin Heidelberghttps://doi.org/10.1007/978-3-540-74757-4
DOI

Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J (2006) Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Can J For Res 36:426–436

Maltamo M, Næsset E, Vauhkonen J (eds) (2014) Forestry applications of airborne laser scanning - concepts and case studies. Managing Forest ecosystems, vol 27. Springer, Dordrechthttps://doi.org/10.1007/978-94-017-8663-8
DOI

Maltamo M, Packalén P, Yu X, Eerikäinen K, Hyyppä J, Pitkänen J (2005) Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For Ecol Manag 216:41–50

Martínez-Harms MJ, Balvanera P (2012) Methods for mapping ecosystem service supply: a review. Int J biodiv Sci Ecosyst Serv Manage 8:17–25

Melin M, Mehtätalo L, Miettinen J, Tossavainen S, Packalen P (2016) Forest structure as a determinant of grouse brood occurrence – an analysis linking LiDAR data with presence/absence field data. For Ecol Manag 380:202–211

Melin M, Packalen P, Matala J, Mehtätalo L, Pusenius J (2013) Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data. Int J Appl Earth Obs Geoinfo 23:389–396

Müller J, Vierling K (2014) Assessing biodiversity by airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser Scanning.Managing Forest ecosystems, vol 27. Springer, Dordrecht, pp 357–374https://doi.org/10.1007/978-94-017-8663-8_18
DOI

Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090

Natural Resources Institute Finland (2017) File service for publicly available data. http://kartta.metla.fi/index-en.html. Accessed 16 Oct 2017
Niemi MT, Vauhkonen J (2016) Extracting canopy surface texture from airborne laser scanning data for the supervised and unsupervised prediction of area-based forest characteristics. Remote Sens. https://doi.org/10.3390/rs8070582
DOI

Ørka HO, Dalponte M, Gobakken T, Næsset E, Ene LT (2013) Characterizing forest species composition using multiple remote sensing data sources and inventory approaches. Scand J For Res 28:677–688

Ørka HO, Gobakken T, Næsset E, Ene L, Lien V (2012) Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification. Can J Remote Sens 38:125–138

Packalén P, Heinonen T, Pukkala T, Vauhkonen J, Maltamo M (2011) Dynamic treatment units in Eucalyptus plantation. For Sci 57:416–426

Pascual C, García-Abril A, García-Montero LG, Martín-Fernández S, Cohen WB (2008) Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands. For Ecol Manag 255:3677–3685

Patenaude G, Hill RA, Milne R, Gaveau DL, Briggs BBJ, Dawson TP (2004) Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens Environ 93:368–380

Peura M, Gonzalez RS, Müller J, Heurich M, Vierling LA, Mönkkönen M, Bässler C (2016) Mapping a 'cryptic kingdom': performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sens Environ 186:428–438

Popescu SC, Hauglin M (2014) Estimation of biomass components by airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser scanning. Managing Forest ecosystems, vol 27. Springer, Dordrecht, pp 157–175https://doi.org/10.1007/978-94-017-8663-8_8
DOI

Pukkala T (2005) Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoille (in Finnish for "prediction models for the expectation value of pine, spruce and birch stands on mineral soils"). Metsätieteen Aikakauskirja 3(2005):311–322

Pukkala T (2008) Integrating multiple services in the numerical analysis of landscape design. In: von Gadow K, Pukkala T (eds) Designing Green Landscapes. Managing Forest Ecosystems, vol 15. Springer, Dordrecht, pp 137–167https://doi.org/10.1007/978-1-4020-6759-4_6
DOI
Pukkala T (2016) Which type of forest management provides most ecosystem services? Forest Ecosyst. https://doi.org/10.1186/s40663-016-0068-5
DOI

Pukkala T, Kangas J (1996) A method for integrating risk and attitude toward risk into forest planning. For Sci 42:198–205

Pukkala T, Kellomäki S, Mustonen E (1988) Prediction of the amenity of a tree stand. Scand J For Res 3:533–544

Pukkala T, Packalén P, Heinonen T (2014) Dynamic treatment units in forest management planning. In: Borges JG, Diaz-Balteiro L, McDill ME, Rodriguez LCE (eds) The Management of Industrial Forest Plantations. Managing Forest ecosystems, vol 33. Springer, Dordrecht, pp 373–392https://doi.org/10.1007/978-94-017-8899-1_12
DOI

Pukkala T, Sulkava R, Jaakkola L, Lähde E (2012) Relationships between economic profitability and habitat quality of Siberian jay in uneven-aged Norway spruce forest. For Ecol Manag 276:224–230

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 16 Oct 2017

Räsänen A, Lensu A, Tomppo E, Kuitunen M (2015) Comparing conservation value maps and mapping methods in a rural landscape in southern Finland. Landscape Online 44:1–19

Räty J, Vauhkonen J, Maltamo M, Tokola T (2016) On the potential to predetermine dominant tree species based on sparse-density airborne laser scanning data for improving subsequent predictions of species-specific timber volumes. Forest Ecosyst. https://doi.org/10.1186/s40663-016-0060-0
DOI

Rechsteiner C, Zellweger F, Gerber A, Breiner FT, Bollmann K (2017) Remotely sensed forest habitat structures improve regional species conservation. Remote Sens Ecol Conserv 3:247–258

Roces-Díaz JV, Burkhard B, Kruse M, Müller F, Díaz-Varela ER, Álvarez-Álvarez P (2017) Use of ecosystem information derived from forest thematic maps for spatial analysis of ecosystem services in northwestern Spain. Landscape Ecol Eng 13:45–57

Sani NA, Kafaky SB, Pukkala T, Mataji A (2016) Integrated use of GIS, remote sensing and multi-criteria decision analysis to assess ecological land suitability in multi-functional forestry. J For Res 27:1127–1135

Schröter M, Rusch GM, Barton DN, Blumentrath S, Nordén B (2014) Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity. PLoS One. https://doi.org/10.1371/journal.pone.0112557
DOI
Schulp CJE, Burkhard B, Maes J, Van Vliet J, Verburg PH (2014) Uncertainties in ecosystem service maps: a comparison on the European scale. PLoS One. https://doi.org/10.1371/journal.pone.0109643
DOI

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

Simonson WD, Allen HD, Coomes DA (2014) Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol Evol 5:719–729

Sverdrup-Thygeson A, Ørka HO, Gobakken T, Næsset E (2016) Can airborne laser scanning assist in mapping and monitoring natural forests? For Ecol Manag 369:116–125

Thompson SD, Nelson TA, Giesbrecht I, Frazer G, Saunders SC (2016) Data-driven regionalization of forested and non-forested ecosystems in coastal British Columbia with LiDAR and RapidEye imagery. Appl Geogr 69:35–50

Tomppo E, Haakana M, Katila M, Peräsaari J (2008a) Multi-source national forest inventory – methods and applications. Managing forest ecosystems, vol 18. Springer, Dordrecht

Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sens Environ 92:1–20

Tomppo E, Katila M, Mäkisara K, Peräsaari J (2014) The multi-source national forest inventory of Finland - methods and results 2011. Working Papers of the Finnish Forest Research Institute, vol 319. http://www.metla.fi/julkaisut/workingpapers/2014/mwp319.htm. Accessed 16 Oct 2017

Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O, Katila M (2008b) Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens Environ 112:1982–1999

Valbuena R, Eerikäinen K, Packalen P, Maltamo M (2016a) Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure. Ecol Indic 60:574–585

Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs GJ (2013) Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(sup1):S18–S31

Valbuena R, Maltamo M, Mehtätalo L, Packalen P (2017) Key structural features of boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sens Environ 194:437–446

Valbuena R, Maltamo M, Packalen P (2016b) Classification of multilayered forest development classes from low-density national airborne lidar datasets. Forestry 89:392–401

Valbuena R, Vauhkonen J, Packalen P, Pitkänen J, Maltamo M (2014) Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS J Photogramm Remote Sens 95:23–33

Vauhkonen J, Imponen J (2016) Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning. Forestry 89:350–363

Vauhkonen J, Packalen P, Malinen J, Pitkänen J, Maltamo M (2014) Airborne laser scanning based decision support for wood procurement planning. Scand J For Res 29(Suppl.1):132–143

Vauhkonen J, Ruotsalainen R (2017a) Assessing the provisioning potential of ecosystem services in a Scandinavian boreal forest: suitability and tradeoff analyses on grid-based wall-to-wall forest inventory data. For Ecol Manag 389:272–284

Vauhkonen J, Ruotsalainen R (2017b) Reconstructing forest canopy from the 3D triangulations of airborne laser scanning point data for the visualization and planning of forested landscapes. Ann For Sci 74:9. https://doi.org/10.1007/s13595-016-0598-6

Vihervaara P, Auvinen AP, Mononen L, Torma M, Ahlroth P, Anttila S, Bottcher K, Forsius M, Heino J, Heliola J, Koskelainen M, Kuussaari M, Meissner K, Ojala O, Tuominen S, Viitasalo M, Virkkala R (2017) How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob Ecol Conserv 10:43–59

Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182

Zolkos SG, Goetz SJ, Dubayah R (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128:289–298

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 March 2018
Accepted: 24 May 2018
Published: 11 June 2018
Issue date: September 2018

Copyright

© The Author(s) 2018.

Acknowledgements

Acknowledgements

The acquisition of the studied data was originally supported by the Research Funds of University of Helsinki.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return