Journal Home > Volume 5 , Issue 3
Background

Coarse woody debris (CWD) is very important for forest ecosystems, particularly for biodiversity and carbon storage. Its relevance as a possible reservoir and source of nutrients is less clear, especially in central Europe.

Methods

Based on a chronosequence of known ages of logs, we analyzed the nutrients stored in CWD of Fagus sylvatica, Picea abies, and Pinus sylvestris at different sites in Germany. To quantify nutrient concentrations, we assessed the use of Near Infrared Reflectance Spectroscopy (NIRS) to determine the chemical properties of CWD.

Results

NIRS models were suitable to predict concentrations of C, N, P, lignin and extractives. Concentrations of most nutrients increased with mass loss, with the exception of potassium, which decreased for beech and pine and remained relatively constant for spruce. The highest nutrient concentrations (N, P, S, Ca and Mn, except Mg and K) were generally observed in highly decomposed spruce logs. The net effect of decreasing CWD mass and increasing nutrient concentrations was either a decreasing (N, P and K in beech; P, Mg, K and Mn in pine), constant (S, Ca and Mg in beech; N, S and Ca in pine) or increasing amount of nutrients (N, P, S and Ca in spruce; Mn in beech) in the logs over the course of decomposition. The C/N ratio decreased for all tree species, most markedly for spruce from ca. 1000 at the beginning of the decomposition process to 180 at 36 years. The N/P ratio converged to a value of about 30 for all three species. Lignin concentrations increased for spruce and beech and remained constant for pine.

Conclusions

Our results indicate that most nutrients remain in CWD for long periods. Nutrients may be used and cycled by microorganisms within CWD, but with the exception of P (in beech), Mg (in pine) and K (in beech and pine), there appears to be little net nutrient export until two thirds of the mass is lost. Instead, N, P, S and Ca were accumulated in spruce logs, indicating that CWD became a net sink rather than a net source of some nutrients for several decades.


menu
Abstract
Full text
Outline
About this article

Nutrient retention and release in coarse woody debris of three important central European tree species and the use of NIRS to determine deadwood chemical properties

Show Author's information Steffen Herrmann1,2( )Jürgen Bauhus1
Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstr. 4, D-79106 Freiburg i.Br., Germany
Thünen Institute of Forest Ecosystems, Alfred-Möller-Straße 1, Haus 41/42, 16225 Eberswalde, Germany

Abstract

Background

Coarse woody debris (CWD) is very important for forest ecosystems, particularly for biodiversity and carbon storage. Its relevance as a possible reservoir and source of nutrients is less clear, especially in central Europe.

Methods

Based on a chronosequence of known ages of logs, we analyzed the nutrients stored in CWD of Fagus sylvatica, Picea abies, and Pinus sylvestris at different sites in Germany. To quantify nutrient concentrations, we assessed the use of Near Infrared Reflectance Spectroscopy (NIRS) to determine the chemical properties of CWD.

Results

NIRS models were suitable to predict concentrations of C, N, P, lignin and extractives. Concentrations of most nutrients increased with mass loss, with the exception of potassium, which decreased for beech and pine and remained relatively constant for spruce. The highest nutrient concentrations (N, P, S, Ca and Mn, except Mg and K) were generally observed in highly decomposed spruce logs. The net effect of decreasing CWD mass and increasing nutrient concentrations was either a decreasing (N, P and K in beech; P, Mg, K and Mn in pine), constant (S, Ca and Mg in beech; N, S and Ca in pine) or increasing amount of nutrients (N, P, S and Ca in spruce; Mn in beech) in the logs over the course of decomposition. The C/N ratio decreased for all tree species, most markedly for spruce from ca. 1000 at the beginning of the decomposition process to 180 at 36 years. The N/P ratio converged to a value of about 30 for all three species. Lignin concentrations increased for spruce and beech and remained constant for pine.

Conclusions

Our results indicate that most nutrients remain in CWD for long periods. Nutrients may be used and cycled by microorganisms within CWD, but with the exception of P (in beech), Mg (in pine) and K (in beech and pine), there appears to be little net nutrient export until two thirds of the mass is lost. Instead, N, P, S and Ca were accumulated in spruce logs, indicating that CWD became a net sink rather than a net source of some nutrients for several decades.

Keywords: Carbon, Decay, CWD, NIRS, F. sylvatica, P. abies, P. sylvestris

References(66)

Albrecht L (1991) Die Bedeutung des toten Holzes im Wald. Forstw Cbl 110:106–113

Bauhus J, Baber K, Müller J (2018) Dead Wood in Forest Ecosystems. Oxford Bibliographies. ISBN: 9780199830060-0196. URL: http://www.oxfordbibliographies.com/obo/page/Ecology. DOI: https://doi.org/10.1093/obo/9780199830060-0196
DOI
BMEL (2014) Der Wald in Deutschland: Ausgewählte Ergebnisse der dritten Bundeswaldinventur. Bundesministerium für Ernährung und Landwirtschaft (BMEL) https://www.bundeswaldinventur.de/fileadmin/SITE_MASTER/content/Dokumente/Downloads/BMEL_Wald_Broschuere.pdf. Accessed 02 Jan 2018

Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73(Suppl 1):1377–1383

Bütler R, Patty L, Le Bayon R-C, Guenat C, Schlaepfer R (2007) Log decay of Picea abies in the Swiss Jura Mountains in central Europe. Forest Ecol Manag 242:791–799

Chang C-W, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy – principal components regression analyses of soil properties. Soil Sci Soc Am J 65: 480–490https://doi.org/10.2136/sssaj2001.652480x
DOI

Chodak M, Ludwig B, Khanna P, Beese F (2002) Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands. J Plant Nutr Soil Sci 165:27–33

DOI
Christensen M, Vesterdal L (2003) Physical and chemical properties of decaying beech wood in two Danish forest reserves. Nat-Man Working Report 24, p 15
Conzen J-P (2001) Multivariate calibration. Bruker Optics GmbH, Ettlingen

Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol 15:2431–2449

Dormann CF, Kühn I (2009) Angewandte Statistik für die biologischen Wissenschaften. 2., durchgesehene, aktualisierte, überarbeitete und erweiterte Auflage. Helmholtz Zentrum für Umweltforschung-UFZ. https://cran.r-project.org/doc/contrib/Dormann+Kuehn_AngewandteStatistik.pdf. Accessed 02 Jan 2018

Effland MJ (1977) Modified procedure to determine acid-insoluble in wood and pulp. Tappi (United States) 60(10):143–144

FAO (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World soil resources report No.103, 2006 edition. Food and Agriculture Organization of the United Nations (FAO), Rome. www.fao.org/3/a-a0510e.pdf

Gillon D, Houssard C, Joffre R (1999) Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia 118(2):173–182

Grove SJ, Meggs J, Goodwin A (2002) A review of biodiversity conservation issues relating to coarse woody debris management in the wet eucalypt production forests of Tasmania. Hobart: Forestry Tasmania, p 72

Grove SJ, Stamm L, Barry C (2009) Log decomposition rates in Tasmanian Eucalypt obliqua determined using an indirect chronosequence approach. Forest Ecol Manag 258:389–397

Gruselle M-C (2010) Litter decomposition in mixed spruce-beech stands. Schriftenreihe Freiburger Forstliche Forschung, Freiburg University, Bd., p 46

Gruselle M-C, Bauhus J (2010) Assessment of the species composition of forest floor horizons in mixed spruce-beech stands by Near Infrared Reflectance Spectroscopy (NIRS). Soil Biol & Biochem 42:1347–1354

Güsewell S, Gessner MO (2009) NÂ :Â P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology 23 (1):211-219

Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory V, Lattin JD, Anderson NH, Cline SP, Aumen NG, Lienkaemper GW, Cromack KJ, Cummins KW (1986) Ecology of Coarse Woody Debris in Temperate Ecosystems. Advances in Ecological Research 15:133–302

Herrmann S, Kahl T, Bauhus J (2015) Decomposition dynamics of coarse woody debris of three important central European tree species. Forest Ecosystems 2:27

Herrmann S, Prescott CE (2008) Mass loss and nutrient dynamics of coarse woody debris in three Rocky Mountain coniferous forests: 21 year results. Can J For Res 38:125–132

Holub SM, Spears JDH, Lajtha K (2001) A reanalysis of nutrient dynamics in coniferous coarse woody debris. Can J For Res 31:1894–1902

Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krüger D (2014) Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS One 9(2):e88141. https://doi.org/10.1371/journal.pone.0088141

Kahl T (2003) Abbauraten von Fichtentotholz (Picea abies (L.) Karst.) – Bohrwiderstandsmessungen als neuer Ansatz zur Bestimmung des Totholzabbaus, einer wichtigen Größe im Kohlenstoffhaushalt mitteleuropäischer Wälder. Magisterarbeit, Friedrich-Schiller-Universität Jena
Kahl T (2008) Kohlenstofftransport aus dem Totholz in den Boden. Dissertation, Universität Freiburg http://www.freidok.uni-freiburg.de/volltexte/5522/. Accessed 02 Jan 2018

Kahl T, Wirth C, Mund M, Böhnisch G, Schulze ED (2009) Using drill resistance to quantify the density in coarse woody debris of Norway spruce. Eur J. Forest Res 128:467–473

Kappes H (2005) Influence of coarse woody debris on the gastropod community of a managed calcareous beech forest in western Europe. J Mollus Stud 71:85–91

Kappes H, Carmelina C, Topp W (2007) Coarse woody debris ameliorates chemical and biotic soil parameters of acidified broad-leaved forests. Appl Soil Ecol 36:190–198

Kappes H, Topp W, Zach P, Kulfan J (2006) Coarse woody debris, soil properties and snails (Mollusca: Gastropoda) in European primeval forests of different environmental conditions. Eur J Soil Biol 42(3):139–146

Kavanagh K (2011) Funghi – Biology and Applications, 2nd edn. Wiley-Blackwell, New Jersey

Kelley SS, Rials TG, Snell R, Groom LH, Sluiter L (2004) Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci Technol 38(4):257–276

Kraigher H, Jurc D, Kalan P, Kutnar L, Levanic T, Rupel M (2003) Beech coarse woody debris characteristics in two virgin forest reserves in southern Slovenia. Nat-Man Working Report 25

Krankina ON, Harmon ME, Griazkin AV (1999) Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J For Res 29:20–32

Kuehne C, Donath C, Müller-Using SI, Bartsch N (2008) Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany. Can J For Res 38(9):2405–2413

Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777

Lambert RL, Lang GE, Reiners WA (1980) Loss of mass and chemical change in decaying boles of a subalpine Balsam fir forest. Ecology 61(6):1460–1473

Malley DF, Martin PD, Ben-Dor E (2004) Application in analysis of soils. In: Barbarick KA, Roberts CA, Dick WA, Jr WJ, Reeves JBIII, Al-Amoodi L (eds) Near-infrared spectroscopy in agriculture, Agronomy Monograph no. 44. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 729–784https://doi.org/10.2134/agronmonogr44.c26
DOI

Means JE, MacMillan PC, Jr CK (1992) Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA. Can J For Res 22(10):1536–1546

Meyer P (1999) Totholzuntersuchungen in nordwestdeutschen Naturwäldern: Methodik und erste Ergebnisse. Forstw Cbl 118:167–180

MLUR (2009) Waldzustandsbericht 2009 Schleswig-Holstein. Ministerium für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (MLUR)

Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. European Journal of Forest Research 129 (6):981–992

Müller-Using SI (2005) Totholzdynamik eines Buchenbestandes im Solling [Woody debris dynamics of a European beech (Fagus sylvatica L.) forest in the Solling.]. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, p 193

Müller-Using SI, Bartsch N (2007) Totholz im Elementhaushalt eines Buchenbestandes. Forstarchiv 78:12–23

Müller-Using SI, Bartsch N (2009) Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. Eur J Forest Res 128(3):287–296

Noll L, Leonhardt S, Arnstadt T, Hoppe B, Poll C, Matzner E, Hofrichter M, Kellner H (2016) Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. Forest Ecol Manag 378:181–192

Ódor P, Standovár T (2003) Changes of physical and chemical properties of dead wood during decay. Nat-Man Working Report 23

Palviainen M, Finér L, Laiho R, Shorohova E, Kapsita E, Vanha-Majamaa I (2010a) Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecol Manag 259(3):390–398

Palviainen M, Finér L, Laiho R, Shorohova E, Kapsita E, Vanha-Majamaa I (2010b) Phosphorus and base cation accumulation and release patterns in decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecol Manag 260(9):1478–1489

Poke FS, Raymond CA (2006) Predicting extractives, lignin and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus. J Wood Chem Technol 26(2):187–199

Poke FS, Wright JK, Raymond CA (2004) Predicting extractives and lignin contents in Eucalyptus globulus using near infrared reflectance analysis. J Wood Chem Technol 24(1):55–67

Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol 10:1–26

Prescott CE, Corrao K, Reid AM, Zukswert JM, Addo-Danso SD (2017) Changes in mass, carbon, nitrogen, and phosphorus in logs decomposing for 30 years in three Rocky Mountain coniferous forests. Can J For Res 47(10):1418–1423

Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester
Schwarze F, Engels J, Mattheck C (1999) Holzzersetzende Pilze in Bäumen: Strategien der Holzzersetzung. Rombach Verlag Kg, Freiburg im Breisgau
Shigo AL (1986) A new tree biology. Shigo and Trees, Associates, Durham

Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

TAPPI (1976) Acid-soluable lignin in wood and pulp UM 250. Technical association of the pulp and paper industry, Atlanta

Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352

Trendelenburg R, Mayer-Wegelin H (1964) Das Holz als Rohstoff, 2. völlig überarbeitete Auflage. Carl Hanser Verlag, München

Turner DP, Koerper GJ, Harmon ME, Lee JJ, (1995) A Carbon Budget for Forests of the Conterminous United States. Ecological Applications 5 (2):421–436

Via BK, Zhou C, Acquah G, Jiang W, Eckhardt L (2014) Near infrared spectroscopy calibration for wood chemistry: Which chemometric technique is best for prediction and interpretation? Sensors 14:13532–13547

Wellbrock N, Bielefeldt J, Eickenscheidt N, Bolte A, Wolff B, Block J, Schröck HW, Schuck J, Moshammer R (2014) Kohlenstoff- und Nährelementspeicherung von Waldflächen des forstlichen Umweltmonitorings (BZE) in Rheinland-Pfalz. Braunschweig: Johann Heinrich von Thünen-Institut, Thünen Rep 16, p. 161

Wells JM, Boddy L, Donelly DP (1998) Wood decay and phosphorus translocation by the cord-forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytol 138:607–617

Williams PC (2001) Implementation of near-infrared technology. In: Williams PC, Norris KH (eds) Near-Infrared Technology in the Agricultural and Food Industries. American Association Cereal Chemist, St. Paul, pp 145–169

Zornoza R, Guerrero C, Mataix-Solera J, Scow KM, Arcenegui V, Mataix-Beneyto J (2008) Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol Biochem 40:1923–1930

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 January 2018
Accepted: 10 April 2018
Published: 26 April 2018
Issue date: September 2018

Copyright

© The Author(s) 2018.

Acknowledgements

Acknowledgements

This research was funded through a grant by the German Science Foundation (DFG - BA 2821/4-1) to J. Bauhus.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return