Journal Home > Volume 5 , Issue 3
Background

Climate change triggered many studies showing that trends and events of environmental conditions can reduce but also accelerate growth at the stand and individual tree level. However, it is still rather unknown how climate change modifies the growth partitioning between the trees in forest stands.

Methods

Based on long-term girth-tape measurements in mature monospecific and mixed-species stands of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) we traced the effect of the severe droughts in 2003 and 2015 from the stand down to the tree level.

Results

Stand growth of Norway spruce decreased by about 30% in the once-in-a-century drought 2015, while European beech was much more drought resistant. Water availability generally amplified size-asymmetric growth partitioning. Especially in case of Norway spruce water availability primarily fostered the growth of predominant trees, whereas drought favoured the growth of small trees at the expense of the predominant ones. We could not detect significant differences between mixed and monospecific stands in this regard.

Conclusions

The drought-induced reallocation of growth in favour of small trees in case of spruce may result from its isohydric character. We hypothesize that as small trees are shaded, they can benefit from the reduced water consumption of their sun-exposed taller neighbours. In case of beech, as an anisohydric species, tall trees suffer less and smaller trees benefit less under drought. The discussion elaborates the consequences of the water dependent growth allocation for forest monitoring, growth modelling, and silviculture.


menu
Abstract
Full text
Outline
About this article

Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech

Show Author's information Hans Pretzsch( )Gerhard SchützePeter Biber
Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany

Abstract

Background

Climate change triggered many studies showing that trends and events of environmental conditions can reduce but also accelerate growth at the stand and individual tree level. However, it is still rather unknown how climate change modifies the growth partitioning between the trees in forest stands.

Methods

Based on long-term girth-tape measurements in mature monospecific and mixed-species stands of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) we traced the effect of the severe droughts in 2003 and 2015 from the stand down to the tree level.

Results

Stand growth of Norway spruce decreased by about 30% in the once-in-a-century drought 2015, while European beech was much more drought resistant. Water availability generally amplified size-asymmetric growth partitioning. Especially in case of Norway spruce water availability primarily fostered the growth of predominant trees, whereas drought favoured the growth of small trees at the expense of the predominant ones. We could not detect significant differences between mixed and monospecific stands in this regard.

Conclusions

The drought-induced reallocation of growth in favour of small trees in case of spruce may result from its isohydric character. We hypothesize that as small trees are shaded, they can benefit from the reduced water consumption of their sun-exposed taller neighbours. In case of beech, as an anisohydric species, tall trees suffer less and smaller trees benefit less under drought. The discussion elaborates the consequences of the water dependent growth allocation for forest monitoring, growth modelling, and silviculture.

Keywords: Climate change, Norway spruce, Drought, Growth partitioning, Competition symmetry, European beech

References(75)

Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227-238

Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, New York

Assmann E, Franz F (1963) Vorläufige Fichten-Ertragstafel für Bayern. Forstliche Forschungsanstalt München, Institut für Ertragskunde, München

Aussenac G, Granier A (1988) Effects of thinning on water stress and growth in Douglas-fir. Can J For Res 18(1):100-105

Biber P (2013) Kontinuität durch Flexibilität-Standardisierte Datenauswertung im Rahmen eines waldwachstumskundlichen Informationssystems. Allg Forst Jagdztg 184:167-177

Biber P, Borges JG, Moshammer R, Barreiro S, Botequim B, Brodrechtová Y, Brukas V, Chirici G, Cordero-Debets R, Corrigan E, Eriksson LO, Favero M, Galev E, Garcia-Gonzalo J, Hengeveld G, Kavaliauskas M, Marchetti M, Marques S, Mozgeris G, Navrátil R, Nieuwenhuis M, Orazio C, Paligorov I, Pettenella D, Sedmák R, Smreček R, Stanislovaitis A, Tomé M, Trubins R, Tuček J, Vizzarri M, Wallin I, Pretzsch H, Sallnäs O (2015) How sensitive are ecosystem Services in European Forest Landscapes to Silvicultural treatment? Forests 6(5):1666-1695. https://doi.org/10.3390/f6051666

Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual tree growth models. For Sci 41:360-377

Binkley D, Kashian DM, Boyden S, Kaye MW, Bradford JB, Arthur MA, Fornwalt PJ, Ryan MG (2006) Patterns of growth dominance in forests of the Rocky Mountains, USA. Forest Ecol Manag 236:193-201

Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci 63:625-644

De Camino R (1976) Zur Bestimmung der Bestandeshomogenität. Allg Forst Jagdztg 147:54-58

de Martonne E (1926) Une nouvelle function climatologique: L'indice d'aridité. Meteorologie 2:449-459

del Río M, Oviedo JAB, Pretzsch H, Löf M, Ruiz-Peinado R (2017a) A review of thinning effects on scots pine stands: from growth and yield to new challenges under global change. Forest Syst 26(2):eR03S

del Río M, Pretzsch H, Ruíz-Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Madrickiere E, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Zlatanow TM, Bravo-Oviedo A (2017b) Species interactions increase the temporal stability of community productivity in Pinus sylvestris-Fagus sylvatica mixtures across Europe. J Ecol 105(4):1032-1043

Dieler J, Uhl E, Biber P, Müller J, Rötzer T, Pretzsch H (2017) Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur J Forest Res 136(4):739-766

Ding H, Pretzsch H, Schütze G, Rötzer T (2017) Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol 19(5):709-719. https://doi.org/10.1111/plb.12596

Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124(4):319-333. https://doi.org/10.1007/s10342-005-0085-3

Flanagan LB, Ehleringer JR, Marshall JD (1992) Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ 15:831-836

Franz F, Bachler J, Deckelmann E, Kennel E, Kennel R, Schmidt A, Wotschikowski U (1973) Bayerische Waldinventur 1970/71. Inventurabschnitt I: Großrauminventur Aufnahme- und Auswertungsverfahren. Forstliche Versuchsanstalt München, München

Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in central-West Germany. Trees 23:729. https://doi.org/10.1007/s00468-009-0315-2

Gebhardt T, Häberle K-H, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric For Meteorol 197:235-243. https://doi.org/10.1016/j.agrformet.2014.05.013

Goisser M, Geppert U, Rötzer T, Paya A, Huber A, Kerner R, Bauerle T, Pretzsch H, Pritsch K, Häberle KH, Matyssek R, Grams TEE (2016) Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies? Forest Ecol Manag 375:268-278

Göttlein A, Baumgarten M, Dieler J (2012) Site conditions and tree-internal nutrient partitioning in mature European beech and Norway spruce at the Kranzberger Forst. Growth and Defence in Plants. Springer, Heidelberg, pp 193-211

Grote R, Gessler A, Hommel R, Poschenrieder W, Priesack E (2016) Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees 30:1467-1482. https://doi.org/10.1007/s00468-016-1446-x

Häberle K-H, Weigt R, Nikolova PS, Reiter IM, Cermak J, Wieser G, Blaschke H, Rötzer T, Pretzsch H, Matyssek R (2012) Case study "Kranzberger Forst": growth and defence in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Growth and Defence in Plants. Springer, Heidelberg, pp 243-271

DOI

Hara T (1993) Mode of competition and size-structure dynamics in plant communities. Plant Spec Biol 8:75-84

Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon? - how trees may cope with more frequent climate change-type drought events. Glob Chang Biol 17(1):642-655. https://doi.org/10.1111/j.1365-2486.2010.02248.x

Irvine J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18:393-402. https://doi.org/10.1093/treephys/18.6.393

Johann K (1993) DESER-Norm 1993. Normen der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten zur Aufbereitung von waldwachstumskundlichen Dauerversuchen. Proceedings Deutscher Verband Forstlicher Forschungsanstalten, Sektion Ertragskunde. Unterreichenbach-Kapfenhardt, pp 95-104

Jucker T, Avăcăriței D, Bărnoaiea I, Duduman G, Bouriaud O, Coomes DA (2016) Climate modulates the effects of tree diversity on forest productivity. J Ecol 104:388-398

Jucker T, Bouriaud O, Avacaritei D, Coomes DA (2014) Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 17:1560-1569

Kauppi PE, Posch M, Pirinen P (2014) Large impacts of climatic warming on growth of boreal forests since 1960. PLoS One 9(11):e111340. https://doi.org/10.1371/journal.pone.0111340

Kramer H (1988) Waldwachstumslehre: Ökologische und anthropogene Einflüsse auf das Wachstum des Waldes, seine Massenund Wertleistung und die Bestandessicherheit. Verlag Paul Parey, Hamburg

Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909-1920. https://doi.org/10.1111/j.1600-0706.2011.19372.x

LWF (2017) Die bayerischen Waldklimastationen (WKS). http://www.lwf.bayern.de/wks. Accessed 2 Aug 2017

Martín-Benito D, Cherubini P, Del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. Trees of different crown classes. Trees 22(3):363-373

Martín-Benito D, Del Río M, Heinrich I, Helle G, Canellas I (2010) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. Forest Ecol Manag 259(5):967-975

Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand-and tree-level determinants of the drought response of scots pine radial growth. Oecologia 168:877-888

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

Mensah S, Veldtman R, Assogbadjo AE, Glèlè Kakaï R, Seifert T (2016) Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol Evol 6(20):7546-7557

Mette T, Falk W, Uhl E, Biber P, Pretzsch H (2015) Increment allocation along the stem axis of dominant and suppressed trees in reaction to drought-results from 123 stem analyses of Norway spruce, scots pine and European beech. Austrian J For Sci 132:185-254

Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24(11):1314-1328

Pretzsch H (2005) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots. Eur J Forest Res 124(3):193-205. https://doi.org/10.1007/s10342-005-0068-4

Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model, 2010th edn. Springer, Berlin, p 664

DOI

Pretzsch H (2010) Zur Verteilung des Zuwachses zwischen den Bäumen eines Bestandes und Abhängigkeit des Verteilungsschlüssels von den Standortbedingungen. Allg Forst Jagdztg 181:4-13

Pretzsch H, Bauerle T, Häberle KH, Matyssek R, Schütze G, Rötzer T (2016) Tree diameter growth after root trenching in a mature mixed stand of Norway spruce (Picea abies[L.] Karst) and European beech (Fagus sylvatica[L.]). Trees 30(5):1761-1773

Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in Central Europe. Can J For Res 40:370-384. https://doi.org/10.1139/X09-195

Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecol Manag 162:3-21. https://doi.org/10.1016/S0378-1127(02)00047-6

Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun. https://doi.org/10.1038/ncomms5967
DOI

Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158(4):1061-1070

Pretzsch H, Dieler J, Rötzer T (2012) Principles of growth partitioning between trees in forest stands under stress. Growth and Defence in Plants. Springer, Heidelberg, pp 311-329

DOI

Pretzsch H, Forrester DI, Bauhus J (2017) Mixed-species forests. Ecology and Management. Springer, Berlin, p 653

DOI

Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches "Wachstum oder Parasitenabwehr?" im Kranzberger Forst. Forstwiss Cent 117:241-257

Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC (2014) Mixed Norway spruce (Picea abies[L.] Karst) and European beech (Fagus sylvatica[L.]) stands under drought: from reaction pattern to mechanism. Trees 28:1305-1321

Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483-495

Pretzsch H, Zenner EK (2017) Toward managing mixed-species stands: from parametrization to prescription. Forest Ecosyst 4:19

Prodan M (1965) Holzmesslehre. J.D. Sauerländer's Verlag, Frankfurt am Main

Quan C, Han S, Utescher T, Utescher T, Zhang C, Liu YS (2013) Validation of temperature-precipitation based aridity index: Paleoclimatic implications. Palaeogeogr Palaeocl 386:86-95

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical computing, Vienna, https://www.R-project.org/

Rais A, van de Kuilen J-WG, Pretzsch H (2014) Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii[Mirb.] Franco) under acute drought stress in southern Germany. Eur J Forest Res 133:1043-1056. https://doi.org/10.1007/s10342-014-0821-7

Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-pinion in the Valais (Switzerland). Plant Ecol 163:105-121

Rötzer T, Seifert T, Gayler S, Priesack E, Pretzsch H (2012) Effects of stress and Defence allocation on tree growth: simulation results at the individual and stand level. Growth and Defence in Plants. Springer, Berlin, Heidelberg, pp 401-432

DOI

Schober R (1975) Ertragstafeln wichtiger Baumarten. J.D. Sauerländer's Verlag, Frankfurt am Main

Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447-455

Seifert T, Müller-Starck G (2009) Impacts of fructification on biomass production and correlated genetic effects in Norway spruce (Picea abies[L.] Karst.) Eur J Forest Res 128(2):155

Seifert T, Seifert S, Seydack A, Durrheim G, von Gadow K (2014) Competition effects in an afrotemperate forest. Forest Ecosyst 1(1):13

Sohn JA, Gebhardt T, Ammer C, Bauhus J, Häberle K-H, Matyssek R, Grams TEE (2013) Mitigation of drought by thinning: short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). Forest Ecol Manag 308:188-197. https://doi.org/10.1016/j.foreco.2013.07.048

Trouvé R, Bontemps J-D, Seynave I, Collet C, Lebourgeois F (2015) Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.) Tree Physiol 35:1035-1046. https://doi.org/10.1093/treephys/tpv067

Utschig H, Neufanger M, Zanker T (2011) Das 100-Baum-Konzept als Einstieg für Durchforstungsregeln in Mischbeständen. Allg Forstz Für Waldwirtsch Umweltvorsorge AFZ Wald AFZ 21:4-6

Wellhausen K, Heym M, Pretzsch H (2017) Mischbestände aus Kiefer (Pinus sylvestris L.) und Fichte (Picea abies (KARST.) L.): Ökologie, Ertrag und waldbauliche Behandlung. Allg Forst Jagdztg 188:3-34

Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. Forest Ecol Manag 202(1-3):67-82

Wichmann L (2001) Annual variations in competition symmetry in even-aged Sitka spruce. Ann Bot-London 88:145-151

Wullschleger SD, Meinzer FC, Vertessy RA (1998) A review of whole-plant water use studies in tree. Tree Physiol 18:499-512

Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Chang Biol 20(2):3767-3779. https://doi.org/10.1111/gcb.12637

Zang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in scots pine, Norway spruce and common oak. Trees 26:557-569. https://doi.org/10.1007/s00468-011-0617-z

Zeller L, Liang J, Pretzsch H (2018) Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. Forest Ecosyst 5:4

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 January 2018
Accepted: 14 March 2018
Published: 02 April 2018
Issue date: September 2018

Copyright

© The Author(s) 2018.

Acknowledgements

Acknowledgements

The authors thank the European Union for funding of the project "Management of mixed-species stands. Options for a low-risk forest management (REFORM)" (FKZ: 2816ERA02S). We further thank the Bayerische Staatsforsten (BaySF) for providing the experimental plot, the Bavarian State Ministry for Nutrition, Agriculture, and Forestry for permanent support of the project W 07 "Long-term experimental plots for forest growth and yield research" (# 7831- 22209-2013) and the German Science Foundation (DFG) for providing the funds for the project PR 292/12-1 "Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech". Thanks are also due to Lothar Zimmermann for providing the meteorological data from the nearby forest climate station Kranzberg Forest/Freising, to Ulrich Kern for the graphical artwork, and to two anonymous reviewers for their constructive criticism.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return