Journal Home > Volume 5 , Issue 3

Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways. These influences are more important, more complex, and more poorly characterised than is widely realised. While there is little doubt that changes in tree cover will impact the water-cycle, the wider consequences remain difficult to predict as the underlying relationships and processes remain poorly characterised. Nonetheless, as forests are vulnerable to human activities, these linked aspects of the water-cycle are also at risk and the potential consequences of large scale forest loss are severe. Here, for non-specialist readers, I review our knowledge of the links between vegetation-cover and climate with a focus on forests and rain (precipitation). I highlight advances, uncertainties and research opportunities. There are significant shortcomings in our understanding of the atmospheric hydrological cycle and of its representation in climate models. A better understanding of the role of vegetation and tree-cover will reduce some of these shortcomings. I outline and illustrate various research themes where these advances may be found. These themes include the biology of evaporation, aerosols and atmospheric motion, as well as the processes that determine monsoons and diurnal precipitation cycles. A novel theory—the 'biotic pump'—suggests that evaporation and condensation can exert a major influence over atmospheric dynamics. This theory explains how high rainfall can be maintained within those continental land-masses that are sufficiently forested. Feedbacks within many of these processes can result in non-linear behaviours and the potential for dramatic changes as a result of forest loss (or gain): for example, switching from a wet to a dry local climate (or visa-versa). Much remains unknown and multiple research disciplines are needed to address this: forest scientists and other biologists have a major role to play. New ideas, methods and data offer opportunities to improve understanding. Expect surprises.


menu
Abstract
Full text
Outline
About this article

Forests, atmospheric water and an uncertain future: the new biology of the global water cycle

Show Author's information Douglas Sheil
Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), |Box 5003, 1432 Ås, Norway

Abstract

Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways. These influences are more important, more complex, and more poorly characterised than is widely realised. While there is little doubt that changes in tree cover will impact the water-cycle, the wider consequences remain difficult to predict as the underlying relationships and processes remain poorly characterised. Nonetheless, as forests are vulnerable to human activities, these linked aspects of the water-cycle are also at risk and the potential consequences of large scale forest loss are severe. Here, for non-specialist readers, I review our knowledge of the links between vegetation-cover and climate with a focus on forests and rain (precipitation). I highlight advances, uncertainties and research opportunities. There are significant shortcomings in our understanding of the atmospheric hydrological cycle and of its representation in climate models. A better understanding of the role of vegetation and tree-cover will reduce some of these shortcomings. I outline and illustrate various research themes where these advances may be found. These themes include the biology of evaporation, aerosols and atmospheric motion, as well as the processes that determine monsoons and diurnal precipitation cycles. A novel theory—the 'biotic pump'—suggests that evaporation and condensation can exert a major influence over atmospheric dynamics. This theory explains how high rainfall can be maintained within those continental land-masses that are sufficiently forested. Feedbacks within many of these processes can result in non-linear behaviours and the potential for dramatic changes as a result of forest loss (or gain): for example, switching from a wet to a dry local climate (or visa-versa). Much remains unknown and multiple research disciplines are needed to address this: forest scientists and other biologists have a major role to play. New ideas, methods and data offer opportunities to improve understanding. Expect surprises.

Keywords: Condensation, Climate, Evaporation, Biotic pump, Ice-nucleation, Transpiration, GCM, Vapour, Water-cycle

References(308)

Abram NJ, Gagan MK, McCulloch MT, Chappell J, Hantoro WS (2003) Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science 301:952–955

Acharya N, Kar SC, Mohanty U, Kulkarni MA, Dash S (2011) Performance of GCMs for seasonal prediction over India—a case study for 2009 monsoon. Theoret Appl Climatol 105:505–520

Adler RF, Gu G, Sapiano M, Wang J-J, Huffman GJ (2017) Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv Geophys 38:679–699

Ahrends A, Hollingsworth PM, Beckschäfer P, Chen H, Zomer RJ, Zhang L, Wang M, Xu J (2017) China's fight to halt tree cover loss. Proc R Soc B 284:20162559

Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604. https://doi.org/10.1126/science.aac8083

Amato P, Joly M, Besaury L, Oudart A, Taib N, Moné AI, Deguillaume L, Delort A-M, Debroas D (2017) Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One 12:e0182869

An ZS, Wu GX, Li JP, Sun YB, Liu YM, Zhou WJ, Cai YJ, Duan AM, Li L, Mao JY, Cheng H, Shi ZG, Tan LC, Yan H, Ao H, Chang H, Feng J (2015) Global monsoon dynamics and climate change. Annu Rev Earth Planet Sci 43:29–77

Andrich MA, Imberger J (2013) The effect of land clearing on rainfall and fresh water resources in Western Australia: a multi-functional sustainability analysis. Int J Sust Dev World Ecol 20:549–563

Arnell NW, Brown S, Gosling SN, Gottschalk P, Hinkel J, Huntingford C, Lloyd-Hughes B, Lowe JA, Nicholls RJ, Osborn TJ, Osborne TM, Rose GA, Smith P, Wheeler TR, Zelazowski P (2016) The impacts of climate change across the globe: a multi-sectoral assessment. Clim Chang 134:457–474. https://doi.org/10.1007/s10584-014-1281-2

Ayers GP, Cainey JM (2008) The CLAW hypothesis: a review of the major developments. Environ Chem 4:366–374

Bateman A, Gong Z, Harder T, Sá S, Wang B, Castillo P, China S, Liu Y, O'Brien R, Palm B (2017) Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmos Chem Phys 17:1759–1773

Bell TL, Rosenfeld D, Kim KM (2009) Weekly cycle of lightning: evidence of storm invigoration by pollution. Geophys Res Lett 36:LT23805. https://doi.org/10.1029/2009GL040915

Bernacchi CJ, VanLoocke A (2015) Terrestrial ecosystems in a changing environment: a dominant role for water. Ann Rev Plant Biol 66:599–622

Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:232–239

Bigg E (1963) A lunar influence on ice nucleus concentrations. Nature 197:172–173

Bigg E, Miles G (1964) The results of large–scale measurements of natural ice nuclei. J Atmos Sci 21:396–403

DOI

Boers N, Marwan N, Barbosa HM, Kurths J (2017) A deforestation-induced tipping point for the south American monsoon system. Sci Rep 7:41489

Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8:261–268. https://doi.org/10.1038/ngeo2398

Boos WR, Storelvmo T (2016) Reply to Levermann et al.: linear scaling for monsoons based on well-verified balance between adiabatic cooling and latent heat release. Proc Nat Acad Sci 113:E2350–E2351

Bousquet P, Ciais P, Miller J, Dlugokencky E, Hauglustaine D, Prigent C, Van der Werf G, Peylin P, Brunke E-G, Carouge C (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

Brier GW, Bradley DA (1964) The lunar synodical period and precipitation in the United States. J Atmos Sci 21:386–395. https://doi.org/10.1175/1520-0469(1964)021 < 0386:tlspap > 2.0.co; 2

DOI

Brodribb TJ, McAdam SA (2017) Evolution of the stomatal regulation of plant water content. Plant Physiol 174:639–649. https://doi.org/10.1104/pp.17.00078

Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review vol C 26299. UNESCO International Hydrological Programme, Paris

Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228

Bucci SJ, Goldstein G, Scholz FG, Meinzer FC (2016) Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited. In: Goldstein G, Santiago LS (eds) Tropical tree physiology: adaptations and responses in a changing environment. Springer International Publishing, Cham, pp 205–225. https://doi.org/10.1007/978-3-319-27422-5_9

Buckley TN (2017) Modeling stomatal conductance. Plant Physiol 174:572–582

Bunyard P (2014) How the biotic pump links the hydrological cycle and the rainforest to climate: is it for real? How can we prove it? University of Sergio Arboleda, Bogotá

Bunyard PP, Hodnett M, Peña C, Burgos-Salcedo JD (2017) Condensation and partial pressure change as a major cause of airflow: experimental evidence. Dyna 84:92–101

Camuffo D (2001) Lunar influences on climate. Earth, Moon and Planets 85–86:99–113

Cappa C (2016) Unexpected player in particle formation. Nature 533:478–480

Carpenter TH, Holle RL, Fernandez-Partagas JJ (1972) Observed relationships between lunar tidal cycles and formation of hurricanes and tropical storms. Mon Weather Rev 100:451–460

DOI

Carslaw KS, Gordon H, Hamilton DS, Johnson JS, Regayre LA, Yoshioka M, Pringle KJ (2017) Aerosols in the pre-industrial atmosphere. Curr Clim Change Rep 3:1–15. https://doi.org/10.1007/s40641-017-0061-2

Cavaleri MA, Ostertag R, Cordell S, Sack L (2014) Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest. Conserv Physiol 2:cou016-cou016. https://doi.org/10.1093/conphys/cou016

Ceppi P, Brient F, Zelinka MD, Hartmann DL (2017) Cloud feedback mechanisms and their representation in global climate models. WIRES Clim Change. https://doi.org/10.1002/wcc.465

Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM (2007) Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol 27:181–198

Cevolani G, Bonelli P, Isnardi C (1987) Luni-solar periodic components in precipitation data. Geophys Res Lett 14:45–48

Chikoore H, Jury MR (2010) Intraseasonal variability of satellite-derived rainfall and vegetation over southern Africa. Earth Interact 14:1–26

Cho BC, Jang GI (2014) Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011. Atmos Environ 94:409–416

Cochet N, Widehem P (2000) Ice crystallization by pseudomonas syringae. Appl Microbiol Biotechnol 54:153–161

Cohen JM (2012) Are we killing the rain? Meditations on the water cycle and, more particularly, on bioprecipitation. Water Int 37:670–682. https://doi.org/10.1080/02508060.2012.706200

Coluzza I, Creamean J, Rossi MJ, Wex H, Alpert PA, Bianco V, Boose Y, Dellago C, Felgitsch L, Fröhlich-Nowoisky J (2017) Perspectives on the future of ice nucleation research: research needs and unanswered questions identified from two international workshops. Atmosphere 8:138

Conen F, Eckhardt S, Gundersen H, Stohl A, Yttri KE (2017) Rainfall drives atmospheric ice-nucleating particles in the coastal climate of southern Norway. Atmos Chem Phys 17:11065–11073

Conen F, Yakutin M, Yttri K, Hüglin C (2017) Ice nucleating particle concentrations increase when leaves fall in autumn. Atmosphere 8:1–9. https://doi.org/10.3390/atmos8100202

Cooper A, Turney C, Hughen KA, Brook BW, McDonald HG, Bradshaw CJ (2015) Abrupt warming events drove late Pleistocene Holarctic megafaunal turnover. Science 349:602–606

Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215

Cramer MD, Hawkins H-J, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24

Dawson TE (1996) Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiol 16:263–272

Dawson TE, Burgess SS, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007) Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol. https://doi.org/10.1093/treephys/27.4.561

de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Nat Acad Sci 108:4041–4046. https://doi.org/10.1073/pnas.1100555108

Deng L, Yan W, Zhang Y, Shangguan Z (2016) Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China. Forest Ecol Manag 366:1–10

Després V, Huffman JA, Burrows SM, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B 64:15598

Detto M, Katul GG, Siqueira M, Juang J-Y, Stoy P (2008) The structure of turbulence near a tall forest edge: the backward-facing step flow analogy revisited. Ecol Appl 18:1420–1435

Devaraju N, Bala G, Nemani R (2015) Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ 38:1931–1946

Domec J-C, King JS, Noormets A, Treasure E, Gavazzi MJ, Sun G, McNulty SG (2010) Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange. New Phytol 187:171–183. https://doi.org/10.1111/j.1469-8137.2010.03245.x

Donohoe A, Battisti DS (2011) Atmospheric and surface contributions to planetary albedo. J Clim 24:4402–4418

Douglas PM, Demarest AA, Brenner M, Canuto MA (2016) Impacts of climate change on the collapse of lowland Maya civilization. Annu Rev Earth Planet Sci 44:613–645

Drumond A, Marengo J, Ambrizzi T, Nieto R, Moreira L, Gimeno L (2014) The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis. Hydrol Earth Syst Sci 18:2577–2598

Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476–479

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, Mv N, Creed IF, Pokorny J, Gaveau D, Spracklen DV, Tobella AB, Ilstedt U, Teuling AJ, Gebrehiwot SG, Sands DC, Muys B, Verbist B, Springgay E, Sugandi Y, Sullivan CA (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

Erfanian A, Wang G, Fomenko L (2017) Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Sci Rep 7:5811. https://doi.org/10.1038/s41598-017-05373-2

Failor KC, Schmale Iii DG, Vinatzer BA, Monteil CL (2017) Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J. https://doi.org/10.1038/ismej.2017.124

Fan J, Wang Y, Rosenfeld D, Liu X (2016) Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73:4221–4252

Filoso S, Bezerra MO, Weiss KC, Palmer MA (2017) Impacts of forest restoration on water yield: a systematic review. PLoS One 12:e0183210

Fischer E, Jones G (2012) Atmospheric dimethysulphide production from corals in the great barrier reef and links to solar radiation, climate and coral bleaching. Biogeochemistry 110:31–46. https://doi.org/10.1007/s10533-012-9719-y

Fisher JB, Malhi Y, Bonal D, Da Rocha HR, De Araujo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H (2009) The land–atmosphere water flux in the tropics. Glob Chang Biol 15:2694–2714

Franks PJ, Berry JA, Lombardozzi DL, Bonan GB (2017) Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling and global models. Plant Physiol 174:583–602. https://doi.org/10.1104/pp.17.00287

French C, Sulas F, Petrie C (2017) Expanding the research parameters of geoarchaeology: case studies from Aksum in Ethiopia and Haryana in India. Archaeol Anthropol Sci 9:1613–1626

Fröhlich-Nowoisky J, Burrows S, Xie Z, Engling G, Solomon P, Fraser M, Mayol-Bracero O, Artaxo P, Begerow D, Conrad R (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136

Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO, Lang-Yona N, Burrows SM, Gunthe SS, Elbert W, Su H, Hoor P, Thines E, Hoffmann T, Després VR, Pöschl U (2016) Bioaerosols in the earth system: climate, health, and ecosystem interactions. Atmos Res 182:346–376. https://doi.org/10.1016/j.atmosres.2016.07.018

Fu P-L, Liu W-J, Fan Z-X, Cao K-F (2016) Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season? Ecohydrology 9:964–972. https://doi.org/10.1002/eco.1694

Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier Van Der Gon H, Facchini M, Fowler D, Koren I, Langford B, Lohmann U (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299

Garcia ES, Swann AL, Villegas JC, Breshears DD, Law DJ, Saleska SR, Stark SC (2016) Synergistic ecoclimate teleconnections from forest loss in different regions structure global ecological responses. PLoS One 11:e0165042

Garcia-Moreno J, Harrison IJ, Dudgeon D, Clausnitzer V, Darwall W, Farrell T, Savy C, Tockner K, Tubbs N (2014) Sustaining freshwater biodiversity in the Anthropocene. In: The Global Water System in the Anthropocene. Springer, Cham. Switzerland, pp. 247–270https://doi.org/10.1007/978-3-319-07548-8_17
DOI

Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50. https://doi.org/10.1029/2012RG000389

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

Good P, Jones C, Lowe J, Betts R, Gedney N (2013) Comparing tropical forest projections from two generations of Hadley Centre earth system models, HadGEM2-ES and HadCM3LC. J Clim 26:495–511. https://doi.org/10.1175/jcli-d-11-00366.1

Goody R (2003) On the mechanical efficiency of deep, tropical convection. J Atmos Sci 60:2827–2832

DOI

Gorshkov VG, Makarieva AM, Nefiodov AV (2012) Condensation of water vapor in the gravitational field. J Exp Theoret Phys 115:723–728

Gu D, Guenther AB, Shilling JE, Yu H, Huang M, Zhao C, Yang Q, Martin ST, Artaxo P, Kim S, Seco R, Stavrakou T, Longo KM, Tóta J, de Souza RAF, Vega O, Liu Y, Shrivastava M, Alves EG, Santos FC, Leng G, Hu Z (2017) Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nat Commun 8:1–7. https://doi.org/10.1038/ncomms15541

Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res-Atmos 100:8873–8892

Guenther C, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chemi Phys 6:3181–3210. https://doi.org/10.5194/acp-6-3181-2006

Guimberteau M, Ciais P, Ducharne A, Boisier JP, Aguiar APD, Biemans H, De Deurwaerder H, Galbraith D, Kruijt B, Langerwisch F (2017) Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios, Hydrolo Earth Syst Sci. 21:1455–1475. https://doi.org/10.5194/hess-21-1455-2017

Hadley G (1735) Concerning the cause of the general trade-winds: by G. Hadley, Esq, FRS. Philos Trans 39:58–62

Hagemann S, Chen C, Clark D, Folwell S, Gosling SN, Haddeland I, Hannasaki N, Heinke J, Ludwig F, Voss F (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dynam 4:129–144

Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeorol 12:556–578. https://doi.org/10.1175/2011jhm1336.1

Halley E (1686) An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds, by E. Halley. Philos Trans 16:153–168

Hallquist M, Wenger J, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N, George C, Goldstein A (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

Hamilton DS (2015) Natural aerosols and climate: understanding the unpolluted atmosphere to better understand the impacts of pollution. Weather 70:264–268

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

Hanson K, Maul GA, McLeish W (1987) Precipitation and the lunar synodic cycle: phase progression across the United States. J Clim Appl Meteorol 26:1358–1362. https://doi.org/10.1175/1520-0450(1987)026 < 1358:patlsc > 2.0.co; 2

DOI

Hara K, Maki T, Kakikawa M, Kobayashi F, Matsuki A (2016) Effects of different temperature treatments on biological ice nuclei in snow samples. Atmos Environ 140:415–419. https://doi.org/10.1016/j.atmosenv.2016.06.011

Hassett MO, Fischer MW, Money NP (2015) Mushrooms as rainmakers: how spores act as nuclei for raindrops. PLoS One 10:e0140407

He T, Liang S, Song D-X (2014) Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J Geophys Res Atmos 119:10281–10298. https://doi.org/10.1002/2014JD021667

Heald CL, Spracklen DV (2015) Land use change impacts on air quality and climate. Chem Rev 115:4476–4496

Heffernan O (2016) The mystery of the expanding tropics. Nature 530:20–22

Hegerl GC, Black E, Allan RP, Ingram WJ, Polson D, Trenberth KE, Chadwick RS, Arkin PA, Sarojini BB, Becker A (2015) Challenges in quantifying changes in the global water cycle. Bull Am Meteorol Soc 96:1097–1115

Heijari J, Blande JD, Holopainen JK (2011) Feeding of large pine weevil on scots pine stem triggers localised bark and systemic shoot emission of volatile organic compounds. Environ Exp Bot 71:390–398. https://doi.org/10.1016/j.envexpbot.2011.02.008

Herzschuh U, Borkowski J, Schewe J, Mischke S, Tian F (2014) Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan plateau as inferred from a pollen-based reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 402:44–54. https://doi.org/10.1016/j.palaeo.2014.02.022

Hewitt C, MacKenzie A, Di Carlo P, Di Marco C, Dorsey J, Evans M, Fowler D, Gallagher M, Hopkins J, Jones C (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Nat Acad Sci 106:18447–18451

Hill TC, Moffett BF, DeMott PJ, Georgakopoulos DG, Stump WL, Franc GD (2014) Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR. Appl Environ Microbiol 80:1256–1267

Hiranuma N, Möhler O, Yamashita K, Tajiri T, Saito A, Kiselev A, Hoffmann N, Hoose C, Jantsch E, Koop T (2015) Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat Geosci 8:273–277

Hirsch RM, Archfield SA (2015) Flood trends: not higher but more often. Nat Clim Chang 5:198–199

Hisano M, Searle EB, Chen HY (2017) Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol Rev. https://doi.org/10.1111/brv.12351

Holder CD (2004) Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecol Manag 190:373–384

Hollinger DY, Kelliher FM, Schulze ED, Kostner BMM (1994) Coupling of tree transpiration to atmospheric turbulence. Nature 371:60–62

Holloway CE, Neelin JD (2010) Temporal relations of column water vapor and tropical precipitation. J Atmos Sci 67:1091–1105

Holopainen JK, Blande JD (2013) Where do herbivore-induced plant volatiles go? Front Plant Sci 4:185. https://doi.org/10.3389/fpls.2013.00185

Holscher D, Kohler L, van Dijk A, Bruijnzeel LA (2004) The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J Hydrol 292:308–322

Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854. https://doi.org/10.5194/acp-12-9817-2012

Hourdin F, Mauritsen T, Gettelman A, Golaz J-C, Balaji V, Duan Q, Folini D, Ji D, Klocke D, Qian Y (2017) The art and science of climate model tuning. Bull Am Meteorol Soc 98:589–602

Huang G, Hayes PE, Ryan MH, Pang J, Lambers H (2017) Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability. Oecologia 185:387–400

Ilstedt U, Bargués Tobella A, Bazié HR, Bayala J, Verbeeten E, Nyberg G, Sanou J, Benegas L, Murdiyarso D, Laudon H, Sheil D, Malmer A (2016) Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci Rep 6:1–12. https://doi.org/10.1038/srep21930

Ilstedt U, Malmer A, Verbeeten E, Murdiyarso D (2007) The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. Forest Ecol Manag 251:45–51

Jackson RB, Jobbágy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, Le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological carbon sequestration. Science 310:1944–1947

Jaenicke R, Matthias-Maser S, Gruber S (2007) Omnipresence of biological material in the atmosphere. Environ Chem 4:217–220

Jang GI, Hwang CY, Cho BC (2017) Effects of heavy rainfall on the composition of airborne bacterial communities. Front Environ Sci En 12:12. https://doi.org/10.1007/s11783-018-1008-0

Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350

Jian M, Gregory RF, Brian JS, Gang H, Jie H, Changming D (2016) Will surface winds weaken in response to global warming? Environ Res Lett 11:124012

Jiang B, Liang S (2013) Improved vegetation greenness increases summer atmospheric water vapor over northern China. J Geophys Res Atmos 118:8129–8139

Johnsson A (2015) Oscillations in plant transpiration. In: Rhythms in Plants. Springer, Cham, Switzerland, pp 157–188https://doi.org/10.1007/978-3-319-20517-5_7
DOI

Joly M, Attard E, Sancelme M, Deguillaume L, Guilbaud C, Morris CE, Amato P, Delort A-M (2013) Ice nucleation activity of bacteria isolated from cloud water. Atmos Environ 70:392–400

Jones G (2013) Marine biology: coral animals combat stress with Sulphur. Nature 502:634–635. https://doi.org/10.1038/nature12698

Joung YS, Ge Z, Buie CR (2017) Bioaerosol generation by raindrops on soil. Nat Commun 8:14668

Kaiser H, Paoletti E (2014) Dynamic stomatal changes. In: Tausz M, Grulke N (eds) Trees in a changing environment: ecophysiology, adaptation, and future survival. Springer Netherland, Dordrecht, pp 61–82. https: //doi.org/10.1007/978-94-017-9100-7_4https://doi.org/10.1007/978-94-017-9100-7_4
DOI

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077 < 0437:tnyrp > 2.0.co; 2

DOI

Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M, Cziczo DJ, Krämer M (2017) Overview of ice nucleating particles. Meteorol Monogr 58:1.1–1.33. https://doi.org/10.1175/amsmonographs-d-16-0006.1

Keys PW, Wang-Erlandsson L, Gordon LJ, Galaz V, Ebbesson J (2017) Approaching moisture recycling governance. Glob Environ Chang 45:15–23

Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21:2680–2696. https://doi.org/10.1175/2007jcli2051.1

Kim D, Sobel AH, Del Genio AD, Chen Y, Camargo SJ, Yao M-S, Kelley M, Nazarenko L (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25:4641–4659

Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28:1313–1320

Kohyama T, Wallace JM (2016) Rainfall variations induced by the lunar gravitational atmospheric tide and their implications for the relationship between tropical rainfall and humidity. Geophys Res Lett 43:918–923

Koren I, Dagan G, Altaratz O (2014) From aerosol-limited to invigoration of warm convective clouds. Science 344:1143–1146

Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci 104:5925–5930

Kume T, Tanaka N, Kuraji K, Komatsu H, Yoshifuji N, Saitoh TM, Suzuki M, Kumagai T (2011) Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agric For Meteorol 151:1183–1192

Kundu S, Fisseha R, Putman AL, Rahn TA, Mazzoleni LR (2012) High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization. Atmos Chem Phys 12:5523–5536. https://doi.org/10.5194/acp-12-5523-2012

Lackmann GM, Yablonsky RM (2004) The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J Atmos Sci 61:1674–1692

DOI

Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27

Lakatos M, Obregón A, Büdel B, Bendix J (2012) Midday dew–an overlooked factor enhancing photosynthetic activity of corticolous epiphytes in a wet tropical rain forest. New Phytol 194:245–253

Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the earth system. New Phytol 183:27–51

Lawrence D, Vandecar K (2015) Effects of tropical deforestation on climate and agriculture. Nat Clim Chang 5:27–36

Lerdau M, Slobodkin L (2002) Trace gas emissions and species-dependent ecosystem services. Trends Ecol Evol 17:309–312. https://doi.org/10.1016/S0169-5347(02)02535-1

Levermann A, Petoukhov V, Schewe J, Schellnhuber HJ (2016) Abrupt monsoon transitions as seen in paleorecords can be explained by moisture-advection feedback. Proc Natl Acad Sci 113:E2348–E2349

Levine NM, Zhang K, Longo M, Baccini A, Phillips OL, Lewis SL, Alvarez-Dávila E, de Andrade ACS, Brienen RJ, Erwin TL (2016) Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc Natl Acad Sci 113:793–797

Li J, Zeng Q (2002) A unified monsoon index. Geophys Res Lett 29:1–4

Li Y, Jourdain NC, Taschetto AS, Gupta AS, Argüeso D, Masson S, Cai W (2017) Resolution dependence of the simulated precipitation and diurnal cycle over the maritime continent. Clim Dynam 48:4009–4028. https://doi.org/10.1007/s00382-016-3317-y

Lindow S, Arny D, Upper C (1978) Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol 36:831–838

Ljungqvist FC, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern hemisphere hydroclimate variability over the past twelve centuries. Nature 532:94–98

Llusia J, Peñuelas J, Gimeno B (2002) Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations. Atmos Environ 36:3931–3938

Loehle C (2017) The epistemological status of general circulation models. Clim Dynam. https://doi.org/10.1007/s00382-017-3717-7

Loescher HW, Gholz HL, Jacobs JM, Oberbauer SF (2005) Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica. J Hydrol 315:274–294

Maggioni V, Meyers PC, Robinson MD (2016) A review of merged high-resolution satellite precipitation product accuracy during the tropical rainfall measuring mission (TRMM) era. J Hydrometeorol 17:1101–1117. https://doi.org/10.1175/jhm-d-15-0190.1

Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A (2013) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. https://doi.org/10.1002/joc.3736

Mahmood R, Pielke RA Sr, McAlpine CA (2016) Climate-relevant land use and land cover change policies. Bull Am Meteorol Soc 97:195–202

Mahowald NM, Ward D, Doney S, Hess P, Randerson JT (2017) Are the impacts of land use on warming underestimated in climate policy? Environ Res Lett 12:094016

Makarieva A, Gorshkov V (2009) Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Phys Lett A 373:4201–4205

Makarieva A, Gorshkov V, Nefiodov A (2014) Condensational power of air circulation in the presence of a horizontal temperature gradient. Phys Lett A 378:294–298

Makarieva A, Gorshkov V, Nefiodov A (2015) Empirical evidence for the condensational theory of hurricanes. Phys Lett A 379:2396–2398

Makarieva A, Gorshkov V, Nefiodov A, Sheil D, Nobre A, Li B-L (2015) Comments on "the tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes". J Clim 28:4293–4307

Makarieva A, Gorshkov V, Nefiodov A, Sheil D, Nobre A, Shearman P, Li B-L (2017) Kinetic energy generation in heat engines and heat pumps: the relationship between surface pressure, temperature and circulation cell size. Tellus A 69:1–17

Makarieva A, Gorshkov V, Sheil D, Nobre A, Li B-L (2013) Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos Chem Phys 13:1039–1056

Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033

Makarieva AM, Gorshkov VG (2010) The biotic pump: condensation, atmospheric dynamics and climate. Int J Water 5:365–385

Makarieva AM, Gorshkov VG, Li B-L (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol Complex 6:302–307

Makarieva AM, Gorshkov VG, Li B-L (2013) Revisiting forest impact on atmospheric water vapor transport and precipitation. Theoret Appl Climatol 111:79–96

Makarieva AM, Gorshkov VG, Nefiodov AV, Chikunov AV, Sheil D, Nobre AD, Li B-L (2017) Fuel for cyclones: the water vapor budget of a hurricane as dependent on its movement. Atmos Res 193:216–230

Makarieva AM, Gorshkov VG, Nefiodov AV, Sheil D, Nobre AD, Bunyard P, Nobre P, Li BL (2017) The equations of motion for moist atmospheric air. J Geophys Res Atmos 122:7300–7307. https://doi.org/10.1002/2017JD026773

Makarieva AM, Gorshkov VG, Sheil D, Nobre AD, Bunyard P, Li B-L (2014) Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content. J Hydrometeorol 15:411–426

Maki LR, Galyan EL, Chang-Chien M-M, Caldwell DR (1974) Ice nucleation induced by pseudomonas syringae. Appl Microbiol 28:456–459

Malmer A, Murdiyarso D, Ilstedt U (2010) Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalizations. Glob Chang Biol 16:599–604

Maraun D (2016) Bias correcting climate change simulations - a critical review. Curr Clim Change Rep 2:211–220. https://doi.org/10.1007/s40641-016-0050-x

Marks CO, Lechowicz MJ (2007) The ecological and functional correlates of nocturnal transpiration. Tree Physiol 27:577–584

Marotzke J, Jakob C, Bony S, Dirmeyer PA, O'Gorman PA, Hawkins E, Perkins-Kirkpatrick S, Le Quere C, Nowicki S, Paulavets K (2017) Climate research must sharpen its view. Nat Clim Chang 7:89–91

Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447

Mason B (1996) The rapid glaciation of slightly supercooled cumulus clouds. Q J Roy Meteor Soc 122:357–365

Matimati I, Verboom GA, Cramer MD (2013) Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. J Exper Bot 65:159–168

Matthews JS, Vialet-Chabrand SR, Lawson T (2017) Diurnal variation in gas exchange: the balance between carbon fixation and water loss. Plant Physiol 174:614–623

McAdam SA, Brodribb TJ (2012) Stomatal innovation and the rise of seed plants. Ecol Lett 15:1–8

McAlpine CA, Ryan JG, Seabrook L, Thomas S, Dargusch PJ, Syktus JI, Pielke RA, Etter AE, Fearnside PM, Laurance WF (2010) More than CO2: a broader paradigm for managing climate change and variability to avoid ecosystem collapse. Curr Opin Environ Sust 2:334–346. https://doi.org/10.1016/j.cosust.2010.10.001

McAlpine CA, Syktus J, Ryan JG, Deo RC, McKeon GM, McGowan HA, Phinn SR (2009) A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia's climate. Glob Chang Biol 15:2206–2223. https://doi.org/10.1111/j.1365-2486.2009.01939.x

McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205

Meinzer FC, Smith DD, Woodruff DR, Marias DE, McCulloh KA, Howard AR, Magedman AL (2017) Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Plant Cell Environ 40:1618–1628. https://doi.org/10.1111/pce.12970

Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323

Michaud AB, Dore JE, Leslie D, Lyons WB, Sands DC, Priscu JC (2014) Biological ice nucleation initiates hailstone formation. J Geophys Res Atmos. https://doi.org/10.1002/2014JD022004

Millán MM (2014) Extreme hydrometeorological events and climate change predictions in Europe. J Hydrol 518:206–224

Miller S, Keim B, Talbot R, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41:1–31

Miralles DG, Van Den Berg MJ, Gash JH, Parinussa RM, De Jeu RA, Beck HE, Holmes TR, Jiménez C, Verhoest NE, Dorigo WA (2014) El Niño-la Niña cycle and recent trends in continental evaporation. Nat Clim Chang 4:122–126

Morris C, Sands D, Glaux C, Samsatly J, Asaad S, Moukahel A, Goncalves FLT, Bigg E (2013) Urediospores of rust fungi are ice nucleation active at > -10℃ and harbor ice nucleation active bacteria. Atmos Chem Phys 13:4223–4233

Morris CE, Conen F, Alex Huffman J, Phillips V, Pöschl U, Sands DC (2014) Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Chang Biol 20:341–351

Mülmenstädt J, Sourdeval O, Delanoë J, Quaas J (2015) Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-train satellite retrievals. Geophys Res Lett 42:6502–6509

Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Juárez RIN, Saatchi SS (2007) Large seasonal swings in leaf area of Amazon rainforests. Proc Natl Acad Sci 104:4820–4823

Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194:337–352. https://doi.org/10.1111/j.1469-8137.2012.04088.x

Niu X, Wang S, Tang J, Lee D-K, Gutowski W, Dairaku K, McGregor J, Katzfey J, Gao X, Wu J, Hong S, Wang Y, Sasaki H (2015) Projection of Indian summer monsoon climate in 2041–2060 by multiregional and global climate models. J Geophys Res Atmos 120:1776–1793. https://doi.org/10.1002/2014JD022620

Nobre AD (2007) Is the amazon forest a sitting duck for climate change? Models need yet to capture the complex mutual conditioning between vegetation and rainfall. In: PLdS D, Ribeiro WC, Nunes LH (eds) A contribution to understanding the regional impacts of global change in South América São Paulo. Instituto de Estudos Avançados da Universidade de São Paulo, Brazil, pp 105–114

Nobre AD (2014) The future climate of Amazonia: scientific assessment report. Sponsored by CCST-INPE, INPA and ARA, São José dos Campos SP, Brazil

O'Brien MJ, Reynolds G, Ong R, Hector A (2017) Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nat Ecol Evol. https://doi.org/10.1038/s41559-017-0326-0

O'Brien JJ, Oberbauer SF, Clark DB (2004) Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant Cell Environ 27:551–567

Parazoo NC, Bowman K, Fisher JB, Frankenberg C, Jones D, Cescatti A, Pérez-Priego Ó, Wohlfahrt G, Montagnani L (2014) Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob Chang Biol 20:3103–3121

Park J-H, Goldstein A, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341:643–647

Paul N, Ayres P (1991) Changes in tissue freezing in Senecio vulgaris infected by rust (Puccinia lagenophorae). Ann Bot 68:129–133

Peatman SC, Matthews AJ, Stevens DP (2014) Propagation of the madden–Julian oscillation through the maritime continent and scale interaction with the diurnal cycle of precipitation. Q J Roy Meteor Soc 140:814–825. https://doi.org/10.1002/qj.2161

Pennycuick L, Norton-Griffiths M (1976) Fluctuations in the rainfall of the Serengeti ecosystem, Tanzania. J Biogeogr 3:125–140. https://doi.org/10.2307/3038141

Phillips VT, Yano J-I, Khain A (2017) Ice multiplication by breakup in ice–ice collisions. Part i: Theoretical formulation. J Atmos Sci 74:1705–1719

Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci 104:15242–15247

Poehlker C, Wiedemann KT, Sinha B, Shiraiwa M, Gunthe SS, Smith M, Su H, Artaxo P, Chen Q, Cheng Y, Elbert W, Gilles MK, Kilcoyne ALD, Moffet RC, Weigand M, Martin ST, Poeschl U, Andreae MO (2012) Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon. Science 337:1075–1078. https://doi.org/10.1126/science.1223264

Pokorny J, Brom J, Cermak J, Hesslerova P, Huryna H, Nadezhdina N, Rejskova A (2010) Solar energy dissipation and temperature control by water and plants. Int J Water 5:311–336

Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15

Pope F (2010) Pollen grains are efficient cloud condensation nuclei. Environ Res Lett 5:044015

Pouzet G, Peghaire E, Aguès M, Baray J-L, Conen F, Amato P (2017) Atmospheric processing and variability of biological ice nucleating particles in precipitation at Opme, France. Atmosphere 8:229

Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of south American low-level jets and aerial rivers. Water Resour Res 50:98–118

Prenni A, Tobo Y, Garcia E, DeMott P, Huffman J, McCluskey C, Kreidenweis S, Prenni J, Pöhlker C, Pöschl U (2013) The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys Res Lett 40:227–231

Prestele R, Alexander P, Rounsevell MDA, Arneth A, Calvin K, Doelman J, Eitelberg DA, Engström K, Fujimori S, Hasegawa T, Havlik P, Humpenöder F, Jain AK, Krisztin T, Kyle P, Meiyappan P, Popp A, Sands RD, Schaldach R, Schüngel J, Stehfest E, Tabeau A, Van Meijl H, Van Vliet J, Verburg PH (2016) Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob Chang Biol 22:3967–3983. https://doi.org/10.1111/gcb.13337

Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841. https://doi.org/10.1111/j.1469-8137.2011.04039.x

Prouty NG, Storlazzi CD, McCutcheon AL, Jenson JW (2014) Historic impact of watershed change and sedimentation to reefs along west-Central Guam. Coral Reefs 33:733–749

Qian J-H (2008) Why precipitation is mostly concentrated over islands in the maritime continent. J Atmos Sci 65:1428–1441

Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cy. https://doi.org/10.1029/2007GB002952

Ramos-Scharrón CE, Torres-Pulliza D, Hernández-Delgado EA (2015) Watershed-and island wide-scale land cover changes in Puerto Rico (1930s–2004) and their potential effects on coral reef ecosystems. Sci Total Environ 506:241–251

Ravishankara A (2012) Water vapor in the lower stratosphere. Science 337:809–810

Reinberg A, Smolensky MH, Touitou Y (2016) The full moon as a synchronizer of circa-monthly biological rhythms: chronobiologic perspectives based on multidisciplinary naturalistic research. Chronobiol Int 33:465–479. https://doi.org/10.3109/07420528.2016.1157083

Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF, 15, 364 scientist signatories from 184 countries (2017) World scientists' warning to humanity: a second notice. Bioscience 67: 1026–1028https://doi.org/10.1093/biosci/bix125
DOI

Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411. https://doi.org/10.1126/science.1075390-a

Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and the terrestrial water balance. Ⅱ. Energy balance and interpretation. Geography Compass 3:761–780

Rosado BH, Oliveira RS, Joly CA, Aidar MP, Burgess SS (2012) Diversity in nighttime transpiration behavior of woody species of the Atlantic rain Forest, Brazil. Agric For Meteorol 158:13–20

Rosenfeld D, Andreae MO, Asmi A, Chin M, Leeuw G, Donovan DP, Kahn R, Kinne S, Kivekäs N, Kulmala M (2014) Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys 52:750–808

Rosenfeld D, Bell TL (2011) Why do tornados and hailstorms rest on weekends? J Geophys Res Atmos 116:1–14

Rosenfeld D, Lohmann U, Raga GB, O'Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313. https://doi.org/10.1126/science.1160606

Roy SS (2006) Impact of lunar cycle on the precipitation in India. Geophys Res Lett. https://doi.org/10.1029/2005GL024771

Rull V, Cañellas-Boltà N, Margalef O, Pla-Rabes S, Sáez A, Giralt S (2016) Three millennia of climatic, ecological, and cultural change on Easter Island: an integrative overview. Front Ecol Evol 4:29

Sabuwala T, Gioia G, Chakraborty P (2015) Effect of rainpower on hurricane intensity. Geophys Res Lett 42:3024–3029

Sahin V, Hall MJ (1996) The effects of afforestation and deforestation on water yields. J Hydrol 178:293–309. https://doi.org/10.1016/0022-1694(95)02825-0

Sakazaki T, Hamilton K, Zhang C, Wang Y (2017) Is there a stratospheric pacemaker controlling the daily cycle of tropical rainfall? Geophys Res Lett 44:1998–2006. https://doi.org/10.1002/2017GL072549

Salazar A, Baldi G, Hirota M, Syktus J, McAlpine C (2015) Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review. Glob Planet Chang 128:103–119

Salzmann U, Hoelzmann P (2005) The Dahomey gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene 15:190–199. https://doi.org/10.1191/0959683605hl799rp

Sánchez Gácita M, Longo KM, Freire JL, Freitas SR, Martin ST (2017) Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia. Atmos Chem Phys 17:2373–2392

Santana RAS, Dias-Júnior CQ, Vale RS, Tóta J, Fitzjarrald DR (2017) Observing and modeling the vertical wind profile at multiple sites in and above the Amazon rain forest canopy. Adv Meteorol. https://doi.org/10.1155/2017/5436157

Savenije HH (1995) New definitions for moisture recycling and the relationship with land-use changes in the Sahel. J Hydrol 167:57–78

Savenije HH (2004) The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol Process 18:1507–1511

Sayer J, Sunderland T, Ghazoul J, Pfund J-L, Sheil D, Meijaard E, Venter M, Boedhihartono AK, Day M, Garcia C (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci 110:8349–8356

Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

Schiermeier Q (2015) Physicists, your planet needs you. Nature 520:140–141

Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53

Schneider U, Finger P, Meyer-Christoffer A, Rustemeier E, Ziese M, Becker A (2017) Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the global precipitation climatology Centre (GPCC). Atmosphere 8:1–17

Schnell R, Vali G (1972) Atmospheric ice nuclei from decomposing vegetation. Nature 236:163–165

Schnell R, Vali G (1973) World-wide source of leaf-derived freezing nuclei. Nature 246:212–213

Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ 29:340–352. https://doi.org/10.1111/j.1365-3040.2005.01490.x

Seinfeld JH, Bretherton C, Carslaw KS, Coe H, DeMott PJ, Dunlea EJ, Feingold G, Ghan S, Guenther AB, Kahn R, Kraucunas I, Kreidenweis SM, Molina MJ, Nenes A, Penner JE, Prather KA, Ramanathan V, Ramaswamy V, Rasch PJ, Ravishankara AR, Rosenfeld D, Stephens G, Wood R (2016) Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc Natl Acad Sci 113:5781–5790. https://doi.org/10.1073/pnas.1514043113

Shaw SL, Gantt B, Meskhidze N (2010) Production and emissions of marine isoprene and monoterpenes: a review. Adv Meteorol. https://doi.org/10.1155/2010/408696

Sheil D (2014) How plants water our planet: advances and imperatives. Trend Plant Sci 19:209–211

Sheil D, Ladd B, Silva LC, Laffan SW, Van Heist M (2016) How are soil carbon and tropical biodiversity related? Environ Conserv 43:231–241

Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. Bioscience 59:341–347

Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7:703–708

Sherwood S, Roca R, Weckwerth T, Andronova N (2010) Tropospheric water vapor, convection, and climate. Rev Geophys. https://doi.org/10.1029/2009RG000301

Smith DJ, Timonen HJ, Jaffe DA, Griffin DW, Birmele MN, Perry KD, Ward PD, Roberts MS (2013) Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl Environ Microb 79:1134–1139

Smith W, McClean T (1989) Adaptive relationship between leaf water repellency, stomatal distribution, and gas exchange. Am J Bot 76(3):465–469

Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–286. https://doi.org/10.1038/nature11390

Spracklen DV, Rap A (2013) Natural aerosol–climate feedbacks suppressed by anthropogenic aerosol. Geophys Res Lett 40:5316–5319. https://doi.org/10.1002/2013GL057966

Stanton DE, Huallpa Chávez J, Villegas L, Villasante F, Armesto J, Hedin LO, Horn H (2014) Epiphytes improve host plant water use by microenvironment modification. Funct Ecol 28:1274–1283. https://doi.org/10.1111/1365-2435.12249

Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–275. https://doi.org/10.1007/s10533-007-9091-5

Sterling SM, Ducharne A, Polcher J (2013) The impact of global land-cover change on the terrestrial water cycle. Nat Clim Chang 3:385–390

Stevens B, Bony S (2013) What are climate models missing? Science 340:1053–1054

Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK, Bindoff NL, Bréon F-M, Church JA, Cubasch U, Emori S, Forster P, Friedlingstein P, Gillett N, Gregory JM, Hartmann DL, Jansen E, Kirtman B, Knutti R, Kumar KK, Lemke P, Marotzke J, Masson-Delmotte V, Meehl ⅡMGA, Piao S, Ramaswamy DV, Randall MR, Rojas M, Sabine C, Shindell D, Talley LD, Vaughan DG, Xie S-P (2013) Technical summary. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 151

Storelvmo T, Tan I (2015) The Wegener–Bergeron–Findeisen process—its discovery and vital importance for weather and climate. Meteor Z 24:455–461

Stuart AJ (2015) Late quaternary megafaunal extinctions on the continents: a short review. Geol J 50:338–363. https://doi.org/10.1002/gj.2633

Sullivan SC, Hoose C, Kiselev A, Leisner T, Nenes A (2017) Initiation of secondary ice production in clouds. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2017-387

Sutanto SJ, Van den Hurk B, Dirmeyer P, Seneviratne S, Rockmann T, Trenberth K, Blyth E, Wenninger J, Hoffmann G (2014) HESS opinions: a perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation. Hydrol Earth Syst Sci 18:2815–2827

Szarzynski J, Anhuf D (2001) Micrometeorological conditions and canopy energy exchanges of a neotropical rain forest (Surumoni-crane project, Venezuela). Plant Ecol 153:231–239

Taraborrelli D, Lawrence MG, Crowley JN, Dillon TJ, Gromov S, Grosz CBM, Vereecken L, Lelieveld J (2012) Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nat Geosci 5:190–193

Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR (2017) Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol Lett 20:779–788

Teneva L, McManus M, Jerolmon C, Neuheimer A, Clark S, Walker G, Kaho'ohalahala K, Shimabukuro E, Ostrander C, Kittinger J (2016) Understanding reef flat sediment regimes and hydrodynamics can inform erosion mitigation on land. Collabra: Psychology 2:1–12. https://doi.org/10.1525/collabra.25

Thompson SE, Harman CJ, Heine P, Katul GG (2010) Vegetation-infiltration relationships across climatic and soil type gradients. J Geophys Res Biogeosci 115:1–12. https://doi.org/10.1029/2009JG001134

Thorley RMS, Taylor LL, Banwart SA, Leake JR, Beerling DJ (2015) The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant Cell Environ 38:1947–1961. https://doi.org/10.1111/pce.12444

Tian H, Lu C, Ciais P, Michalak AM, Canadell JG, Saikawa E, Huntzinger DN, Gurney KR, Sitch S, Zhang B (2016) The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531:225–228

Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical indo-Pacific warming. Nature 491:439–443

Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

Unger N (2014) Human land-use-driven reduction of forest volatiles cools global climate. Nat Clim Chang 4:907–910

van der Ent R, Savenije H (2011) Length and time scales of atmospheric moisture recycling. Atmos Chem Phys 11:1853–1863

van der Ent R, Wang-Erlandsson L, Keys P, Savenije H (2014) Contrasting roles of interception and transpiration in the hydrological cycle-part 2: moisture recycling. Earth Syst Dynam 5:471

van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46. https://doi.org/10.1029/2010wr009127

Vanclay JK (2009) Managing water use from forest plantations. Forest Ecol Manag 257:385–389

Viglizzo E, Jobbágy E, Ricard M, Paruelo J (2016) Partition of some key regulating services in terrestrial ecosystems: meta-analysis and review. Sci Total Environ 562:47–60

Viglizzo EF, Nosetto MD, Jobbágy EG, Ricard MF, Frank FC (2015) The ecohydrology of ecosystem transitions: a meta-analysis. Ecohydrology 8:911–921

Villegas JC, Tobón C, Breshears DD (2008) Fog interception by non-vascular epiphytes in tropical montane cloud forests: dependencies on gauge type and meteorological conditions. Hydrol Process 22:2484–2492

Wacker U, Frisius T, Herbert F (2006) Evaporation and precipitation surface effects in local mass continuity laws of moist air. J Atmos Sci 63:2642–2652

Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37. https://doi.org/10.1029/2010GL044571

Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50:1–54

Wang L, Kaseke KF, Seely MK (2017) Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4:1–18. https://doi.org/10.1002/wat2.1179

Wang-Erlandsson L, Fetzer I, Keys PW, van der Ent RJ, Savenije HHG, Gordon LJ (2017) Remote land use impacts on river flows through atmospheric teleconnections. Hydrol Earth Syst Sci Discuss 2017:1–17. https://doi.org/10.5194/hess-2017-494

Webb TJ, Woodward FI, Hannah L, Gaston KJ (2005) Forest cover–rainfall relationships in a biodiversity hotspot: the Atlantic Forest of Brazil. Ecol Appl 15:1968–1983. https://doi.org/10.1890/04-1675

Wei Z, Yoshimura K, Wang L, Miralles DG, Jasechko S, Lee X (2017) Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys Res Lett 44:2792–2801

Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235. https://doi.org/10.1126/science.1140746

Wever N (2012) Quantifying trends in surface roughness and the effect on surface wind speed observations. J Geophys Res Atmos 117:1–14

Wolf A, Anderegg WRL, Pacala SW (2016) Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1615144113

Wright JS, Fu R, Worden JR, Chakraborty S, Clinton NE, Risi C, Sun Y, Yin L (2017) Rainforest-initiated wet season onset over the southern Amazon. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1621516114

Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, Stark SC, Christoffersen B, Prohaska N (2016) Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351:972–976

Xu C, Wei M, Chen J, Sui X, Zhu C, Li J, Zheng L, Sui G, Li W, Wang W (2017) Investigation of diverse bacteria in cloud water at Mt. tai, China. Sci Total Environ 580:258–265

Yakobi-Hancock JD, Ladino LA, Abbatt JP (2014) Review of recent developments and shortcomings in the characterization of potential atmospheric ice nuclei: focus on the tropics. Revista de Ciencias 17:15–34

Yim BY, Yeh SW, Song HJ, Dommenget D, Sohn B (2017) Land-sea thermal contrast determines the trend of Walker circulation simulated in atmospheric general circulation models. Geophys Res Lett 44:5854–5862

Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24:323–331

Yue X, Unger N, Zheng Y (2015) Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades. Atmos Chem Phys 15:11931–11948

Zajączkowska U, Barlow PW (2017) The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha×piperita L.) Plant Biol 19:630–642. https://doi.org/10.1111/plb.12561

Zemp DC, Schleussner C-F, Barbosa HMJ, Hirota M, Montade V, Sampaio G, Staal A, Wang-Erlandsson L, Rammig A (2017b) Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat Commun 8:14681. https://doi.org/10.1038/ncomms14681

Zemp DC, Schleussner CF, Barbosa HMJ, Rammig A (2017a) Deforestation effects on Amazon forest resilience. Geophys Res Lett 44:6182–6190. https://doi.org/10.1002/2017GL072955

Zhang K, Kimball JS, Nemani RR, Running SW, Hong Y, Gourley JJ, Yu Z (2015) Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci Rep 5:15956

Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF (2013) Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant Cell Environ 36:149–158. https://doi.org/10.1111/j.1365-3040.2012.02563.x

Zhao T, Zhao J, Hu H, Ni G (2016) Source of atmospheric moisture and precipitation over China's major river basins. Front Earth Sci 10:159–170. https://doi.org/10.1007/s11707-015-0497-4

Zhou J, Lau K (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

DOI

Zhu Z, Piao S, Xu Y, Bastos A, Ciais P, Peng S (2017) The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophys Res Lett 44:3209–3218

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 September 2017
Accepted: 02 January 2018
Published: 20 March 2018
Issue date: September 2018

Copyright

© The Author(s) 2018.

Acknowledgements

Acknowledgements

Many ideas presented here are the result of discussions with colleagues, particularly Anastassia Makarieva and Victor Gorshkov who also provided detailed feedback on earlier drafts. I am grateful for the insights and suggestions of two anonymous reviewers as well as to Jan Vermaat, Rannveig Margrete Jacobsen, Antonio Donato Nobre and Peter Bunyard for comments on a near final draft. I thank Miriam van Heist for help with document review and preparation.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return