Journal Home > Volume 5 , Issue 1
Background

Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functions and ecosystem services. Spatially consistent field-measurements of canopy structure are however lacking, particularly for the tropics.

Methods

Here, we introduce the Global LAI database: a global dataset of field-based canopy structure measurements spanning tropical forests in four continents (Africa, Asia, Australia and the Americas). We use these measurements to test for climate dependencies within and across continents, and to test for the potential of anthropogenic disturbance and forest protection to modulate those dependences.

Results

Using data collected from 887 tropical forest plots, we show that maximum water deficit, defined across the most arid months of the year, is an important predictor of canopy structure, with all three canopy attributes declining significantly with increasing water deficit. Canopy attributes also increase with minimum temperature, and with the protection of forests according to both active (within protected areas) and passive measures (through topography). Once protection and continent effects are accounted for, other anthropogenic measures (e.g. human population) do not improve the model.

Conclusions

We conclude that canopy structure in the tropics is primarily a consequence of forest adaptation to the maximum water deficits historically experienced within a given region. Climate change, and in particular changes in drought regimes may thus affect forest structure and function, but forest protection may offer some resilience against this effect.


menu
Abstract
Full text
Outline
About this article

Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements

Show Author's information Marion Pfeifer1 ( )Alemu Gonsamo2William Woodgate34Luis Cayuela5Andrew R. Marshall678Alicia Ledo9Timothy C. E. Paine10Rob Marchant11Andrew Burt12Kim Calders1213Colin Courtney-Mustaphi14Aida Cuni-Sanchez715Nicolas J. Deere15Dereje Denu17Jose Gonzalez de Tanago18Robin Hayward7Alvaro Lau1819Manuel J. Macía20Pieter I. Olivier21Petri Pellikka22Hamidu Seki23Deo Shirima23Rebecca Trevithick24Beatrice Wedeux25Charlotte Wheeler12Pantaleo K. T. Munishi26Thomas Martin27Abdul Mustari28Philip J. Platts729
School of Natural and Environmental Sciences, Newcastle University, Upon Tyne, Newcastle NE1 7RU, UK
Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
Land and Water, Commonwealth Scientific and Industrial Research Organisation, Yarralumla, ACT, Australia
School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, E-28933 Móstoles, Madrid, Spain
Tropical Forest and People Research Centre, University of the Sunshine Coast, Sippy Downs, Australia
Environment Department, University of York, York, UK
Flamingo Land Ltd., Malton, UK
The Institute of Biological and Environmental Sciences, Environmental Modelling Group, University of Aberdeen, Aberdeen, UK
Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
York Institute for Tropical Ecosystems, Environment Department, University of York, York YO10 5NG, UK
Department of Geography, University College London, Gower Street, London WC1E 6BT, UK
Earth Observation, Climate and Optical Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
Department of Archaeology and Ancient History, Uppsala Universitet, P.O. Box 256, -751 05 Uppsala, SE, Sweden
Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, DK, Denmark
Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK
Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
Wageningen University & Research, Laboratory of Geo-Information Science and Remote Sensing, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Center for International Forestry Research (CIFOR), Situ Gede, Sindang Barang, Bogor 16680, Indonesia
Departamento de Biología, Área de Botánica, Universidad Autónoma de Madrid, Calle Darwin 2, -28049 Madrid, ES, Spain
Conservation Ecology Research Unit, University of Pretoria, Hatfield, Pretoria, South Africa
Department of Geography, University of Helsinki, 00014 Helsinki, Finland
Department of Geography, Faculty of Humanities and Social Sciences, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
Department of Science, Information Technology, Innovation and the Arts, Queensland Government, Brisbane, Australia
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
Department of Forestry, Sokoine University of Agriculture, Morogoro, Tanzania
Operation Wallacea Ltd, Wallace House, Old Bolingbroke, Lincolnshire PE23 4EX, UK
Department of Conservation of Forest Resources and Ecotourism, Faculty of Forestry, Bogor Agricultural University, Kampus Fahutan, IPB Darmaga, Kotak Pos 168, Bogor 16001, Indonesia
Department of Biology, University of York, York YO10 5DD, UK

Abstract

Background

Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functions and ecosystem services. Spatially consistent field-measurements of canopy structure are however lacking, particularly for the tropics.

Methods

Here, we introduce the Global LAI database: a global dataset of field-based canopy structure measurements spanning tropical forests in four continents (Africa, Asia, Australia and the Americas). We use these measurements to test for climate dependencies within and across continents, and to test for the potential of anthropogenic disturbance and forest protection to modulate those dependences.

Results

Using data collected from 887 tropical forest plots, we show that maximum water deficit, defined across the most arid months of the year, is an important predictor of canopy structure, with all three canopy attributes declining significantly with increasing water deficit. Canopy attributes also increase with minimum temperature, and with the protection of forests according to both active (within protected areas) and passive measures (through topography). Once protection and continent effects are accounted for, other anthropogenic measures (e.g. human population) do not improve the model.

Conclusions

We conclude that canopy structure in the tropics is primarily a consequence of forest adaptation to the maximum water deficits historically experienced within a given region. Climate change, and in particular changes in drought regimes may thus affect forest structure and function, but forest protection may offer some resilience against this effect.

Keywords: Climate change, Protected areas, Leaf area index, Fractional vegetation cover, Fraction of absorbed photosynthetically active radiation, Human population pressure, Drought

References(93)

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660-684. https://doi.org/10.1016/j.foreco.2009.09.001

Asner GP, Alencar A (2010) Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol 187(3):569-578. https://doi.org/10.1111/j.1469-8137.2010.03310.x

Asner GP, Keller M, Silva JNM (2004) Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon. Glob Change Biol 10(5):765-783. https://doi.org/10.1111/j.1529-8817.2003.00756.x

Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12(3):191-205. https://doi.org/10.1046/j.1466-822X.2003.00026.x

Baret F, Weiss M, Baret F (2010) CAN-EYE V6.1 user manual. 1-47. https://www6.paca.inra.fr/can-eye/Documentation/Publications. Accessed 21 July 2017

Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B (2013) GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production. Remote Sens Environ 137:299-309. https://doi.org/10.1016/j.rse.2012.12.027

Bates D, Mächler M, Bolker B (2012) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1-48. https://doi.org/10.18637/jss.v067.i01

Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA, Gruber B, Hof C, Jansen F, Knapp S, Kreft H, Schneider A, Winter M, Dormann CF (2012) What's on the horizon for macroecology? Ecography 35:673-683

Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449. https://doi.org/10.1126/science.1155121

Barton K (2014) Package 'MuMin'. R statistical software package. https://r-forge.r-project.org/scm/viewvc.php/*checkout*/www/MuMIn-manual.pdf?revision=287&root=mumin. Last accessed 18/12/2017.

Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci U S A 111:6347-6352. https://doi.org/10.1073/pnas.1305499111

Bréda NJJ, Breda NJ, Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403-2417. https://doi.org/10.1093/jxb/erg263

Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six earth system models of intermediate complexity. Clim Dyn 26:587-600. https://doi.org/10.1007/s00382-005-0092-6

Bruner a G, Gullison RE, Rice RE, G a d F (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125-128. https://doi.org/10.1126/science.291.5501.125

Calder IR (2002) Forests and hydrological services: reconciling public and science perceptions. L use. Water Resour Res 2:1-12. https://doi.org/10.1016/j.foreco.2007.06.015

Chen JM, Black T (1992) Defining leaf area index for non-flat leaves. Plant Cell Environ 15:421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752-755. https://doi.org/10.1038/nature11688

Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371-384. https://doi.org/10.2307/3061128

Clark DA, Clark DB, Oberbauer SF (2013) Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997-2009. J Geophys Res Biogeosci 118:783-794. https://doi.org/10.1002/jgrg.20067

Cuni-Sanchez A, Pfeifer M, Marchant R, Burgess NDND (2016) Ethnic and locational differences in ecosystem service values: insights from the communities in forest islands in the desert. Ecosyst Serv 19:42-50. https://doi.org/10.1016/j.ecoser.2016.04.004

Dáttilo W, Dyer L (2014) Canopy openness enhances diversity of ant-plant interactions in the Brazilian Amazon rain forest. Biotropica 46:712-719. https://doi.org/10.1111/btp.12157

Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science (80-) 263:185-190. https://doi.org/10.1126/science.263.5144.185

Enquist BJ, Enquist CAF (2011) Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Glob Chang Biol 17:1408-1424. https://doi.org/10.1111/j.1365-2486.2010.02326.x

Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302-4315. https://doi.org/10.1002/joc.5086

Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74-88. https://doi.org/10.1016/0034-4257(94)00066-V

Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB (2008) Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric For Meteorol 148:1193-1209. https://doi.org/10.1016/j.agrformet.2008.02.014

Gatti LV, Gloor M, Miller JB, Doughty CE, Malhi Y, Domingues LG, Basso LS, Martinewski A, Correia CSC, Borges VF, Freitas S, Braz R, Anderson LO, Rocha H, Grace J, Phillips OL, Lloyd J (2014) Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506:76-80. https://doi.org/10.1038/nature12957

Gaveau DLA, Wandono H, Setiabudi F (2007) Three decades of deforestation in southwest Sumatra: have protected areas halted forest loss and logging, and promoted re-growth? Biol Conserv 134:495-504. https://doi.org/10.1016/j.biocon.2006.08.035

Gonsamo A, D'odorico P, Pellikka P (2013) Measuring fractional forest canopy element cover and openness - definitions and methodologies revisited. Oikos 122:1283-1291. https://doi.org/10.1111/j.1600-0706.2013.00369.x

Gonsamo A, Pellikka P (2008) Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography. For Ecol Manag 256:749-759. https://doi.org/10.1016/j.foreco.2008.05.032

Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sens Environ 70:29-51. https://doi.org/10.1016/S0034-4257(99)00056-5

Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci U S A 100:572-576. https://doi.org/10.1073/pnas.0133045100

Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, Kraft NJB, Jump AS (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20:539-553. https://doi.org/10.1111/ele.12748

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850-853. https://doi.org/10.1126/science.1244693

Hardwick SRSR, Toumi R, Pfeifer M, Turner EC, Nilus R, Ewers RM (2015) The relationship between leaf area index and microclimate in tropical Forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric For Meteorol 201:187-195. https://doi.org/10.1016/j.agrformet.2014.11.010

Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng 129:53-63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)

Hilbert DW, Ostendorf B, Hopkins MS (2001) Sensitivity of tropical forests to climate change in the humid tropics of north Queensland. Austral Ecol 26:590-603. https://doi.org/10.1046/j.1442-9993.2001.01137.x

Iio A, Hikosaka K, Anten NPR, Nakagawa Y, Ito A (2014) Global dependence of field-observed leaf area index in woody species on climate: a systematic review. Glob Ecol Biogeogr 23:274-285. https://doi.org/10.1111/geb.12133

IPCC (2013) IPCC fifth assessment report (AR5) - the physical science basis. https://www.ipcc.ch/report/ar5/. Accessed 21 July 2017
Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. Int Cent Trop Agric http://srtm.csi.cgiar.org. Accessed 21 July 2017

Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: part Ⅰ. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19-35. https://doi.org/10.1016/j.agrformet.2003.08.027

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005) Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agric For Meteorol 132:96-114. https://doi.org/10.1016/j.agrformet.2005.06.003

Jonckheere I, Nackaerts K, Muys B, van Aardt J, Coppin P (2006) A fractal dimension-based modelling approach for studying the effect of leaf distribution on LAI retrieval in forest canopies. Ecol Model 197:179-195. https://doi.org/10.1016/j.ecolmodel.2006.02.036

Jonckheere IG, Muys B, Coppin PR (2005) Derivative analysis for in situ high dynamic range hemispherical photography and its application in forest stands. Geosci Remote Sens Lett IEEE 2:296-300. https://doi.org/10.1109/LGRS.2005.846904

Joppa LN, Loarie SR, Pimm SL (2008) On the protection of "protected areas". Proc Natl Acad Sci U S A 105:6673-6678. https://doi.org/10.1073/pnas.0802471105

Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324-327. https://doi.org/10.1038/nature12291

Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S, Royer J (2002) Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: conflicting stomatal conductance and LAI responses. J Geophys Res 107:4808. https://doi.org/10.1029/2001JD001245

Laurance WF, Bruce Williamson G (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15:1529-1535. https://doi.org/10.1046/j.1523-1739.2001.01093.x

Laurance WF, Goosem M, Laurance SG (2009) Impacts of roads and linear clearings on tropical forests. Trend Ecol Evol 24:659-669

Laurance WF, Useche DC, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benitez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R, Cords M, Danielsen F, De Dijn B, Dinerstein E, Donnelly MA, Edwards D, Edwards F, Farwig N, Fashing P, Forget PM, Foster M, Gale G, Harris D, Harrison R, Hart J, Karpanty S, Kress WJ, Krishnaswamy J, Logsdon W, Lovett J, Magnusson W, Maisels F, Marshall AR, McClearn D, Mudappa D, Nielsen MR, Pearson R, Pitman N, van der Ploeg J, Plumptre A, Poulsen J, Quesada M, Rainey H, Robinson D, Roetgers C, Rovero F, Scatena F, Schulze C, Sheil D, Struhsaker T, Terborgh J, Thomas D, Timm R, Urbina-Cardona JN, Vasudevan K, Wright SJ, Arias-G JC, Arroyo L, Ashton M, Auzel P, Babaasa D, Babweteera F, Baker P, Banki O, Bass M, Bila-Isia I, Blake S, Brockelman W, Brokaw N, Bruhl CA, Bunyavejchewin S, Chao JT, Chave J, Chellam R, Clark CJ, Clavijo J, Congdon, R, Corlett R, Dattaraja HS, Dave C, Davies G, Beisiegel BD, da Silva RD, Di Fiore A, Diesmos A, Dirzo R, Doran-Sheehy D, Eaton M, Emmons L, Estrada A, Ewango C, Fedigan L, Feer F, Fruth B, Willis JG, Goodale U, Goodman S, Guix JC, Guthiga P, Haber W, Hamer K, Herbinger I, Hill J, Huang ZL, Sun IF, Ickes K, Itoh A, Ivanauskas N, Jackes B, Janovec J, Janzen D, Jiangming M, Jin C, Jones T, Justiniano H, Kalko E, Kasangaki A, Killeen T, King HB, Klop E, Knott C, Kone I, Kudavidanage E, Ribeiro JLD, Lattke J, Laval R, Lawton R, Leal M, Leighton M, Lentino M, Leonel C, Lindsell J, Ling-Ling L, Linsenmair KE, Losos E, Lugo A, Lwanga J, Mack AL, Martins M, McGraw WS, McNab R, Montag L, Thompson JM, Nabe-Nielsen J, Nakagawa M, Nepal S, Norconk M, Novotny V, O'Donnell S, Opiang M, Ouboter P, Parker K, Parthasarathy N, Pisciotta K, Prawiradilaga D, Pringle C, Rajathurai S, Reichard U, Reinartz G, Renton, K, Reynolds G, Reynolds V, Riley E, Rodel MO, Rothman J, Round P, Sakai S, Sanaiotti T, Savini T, Schaab G, Seidensticker J, Siaka A, Silman MR, Smith TB, de Almeida SS, Sodhi N, Stanford C, Stewart K, Stokes E, Stoner KE, Sukumar R, Surbeck M, Tobler M, Tscharntke T, Turkalo A, Umapathy G, van Weerd M, Rivera JV, Venkataraman M, Venn L, Verea C, de Castilho CV, Waltert M, Wang B, Watts D, Weber W, West P, Whitacre D, Whitney K, Wilkie D, Williams S, Wright DD, Wright P, Xiankai L, Yonzon P, Zamzani F (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290-294. https://doi.org/10.1038/nature11318
DOI

Leroux SJ, Krawchuk MA, Schmiegelow F, Cumming SG, Lisgo K, Anderson LG, Petkova M (2010) Global protected areas and IUCN designations: do the categories match the conditions? Biol Conserv 143:609-616. https://doi.org/10.1016/j.biocon.2009.11.018

Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo MN, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana JR, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KSH, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Woll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003-1006. https://doi.org/10.1038/nature07771

Lloyd J, Farquhar GD (2008) Effects of rising temperatures and[CO2] on the physiology of tropical forest trees. Philos Trans R Soc Lond Ser B Biol Sci 363:1811-1817. https://doi.org/10.1098/rstb.2007.0032

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213-215. https://doi.org/10.1038/nature07276

Malhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci 106:20610-20615. https://doi.org/10.1073/pnas.0804619106

Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261-1282. https://doi.org/10.1175/1520-0442-16.9.1261

McGrath JM, Karnosky DF, Ainsworth EA (2010) Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. Environ Pollut 158:1023-1028. https://doi.org/10.1016/j.envpol.2009.07.004

Meir P, Metcalfe D, Costa AC, Fisher R (2008) The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philos Trans R Soc B: Biolog Sci 363(1498):1849-1855. https://doi.org/10.1098/rstb.2007.0021

Mittermeier R, Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier C, Lamoreux J, Fonseca Gab d (2004) Hotspots revisited: Earth's biologically richest and most threatened ecoregions. Chicago: University of Chicago Press.

Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma K, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song LA, Wang H, Ashton LA (2017) Forests and their canopies: achievements and horizons in canopy science. Trend Ecol Evol 32:438-451. https://doi.org/10.1016/j.tree.2017.02.020

Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science (80-) 300:1560-1563. https://doi.org/10.1126/science.1082750

Nepstad D, Lefebvre P, Lopes da Silva U, Tomasella J, Schlesinger P, Solorzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Chang Biol 10:704-717. https://doi.org/10.1111/j.1529-8817.2003.00772.x

Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Korner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere : a global view of forest canopies. Science (80-) 301:183-186. https://doi.org/10.1126/science.1084507

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world's forests. Science 333:988-993. https://doi.org/10.1126/science.1201609

Pereira R, Zweede J, Asner GP, Keller M (2002) Forest canopy damage and recovery in reduced-impact and conventional selective logging in eastern Para, Brazil. For Ecol Manag 168:77-89. https://doi.org/10.1016/S0378-1127(01)00732-0

Pfeifer, M (2017) Manual to measure and model leaf area index and its spatial variability on local and landscape scale. figshare. https://doi.org/10.6084/m9.figshare.5684182.v1.

Pfeifer M, Burgess NDND, Swetnam RD, Platts PJ, Willcock S, Marchant R (2012) Protected areas: mixed success in conserving East Africa's evergreen forests. PLoS One 7:e39337. https://doi.org/10.1371/journal.pone.0039337

Pfeifer M, Gonsamo A, Disney M, Pellikka P, Marchant R (2012) Leaf area index for biomes of the eastern Arc Mountains: Landsat and SPOT observations along precipitation and altitude gradients. Remote Sens Environ 118:103-115. https://doi.org/10.1016/j.rse.2011.11.009

Pfeifer M, Kor L, Nilus R, Turner E, Cusack J, Lysenko I, Khoo M, Chey VK, Chung AC, Ewers RM (2016) Mapping the structure of Borneo's tropical forests across a degradation gradient. Remote Sens Environ 176:84-97. https://doi.org/10.1016/j.rse.2016.01.014

Pfeifer M, Lefebvre V, Gonsamo A, Pellikka PKE, Marchant R, Denu D, Platts PJ (2014) Validating and linking the GIMMS leaf area index (LAI3g) with environmental controls in tropical Africa. Remote Sens 6:1973-1990. https://doi.org/10.3390/rs6031973

Pfeifer M, Lefebvre V, Turner E, Cusack J, Khoo M, Chey VK, Peni M, Ewers RM (2015) Deadwood biomass: an underestimated carbon stock in degraded tropical forests? Environ Res Lett. https://doi.org/10.1088/1748-9326/10/4/044019

Platts PJ (2012) Spatial Modelling, Phytogeography and conservation in the eastern Arc Mountains of Tanzania and Kenya. Ph.D. Thesis, Environment Department, University of York, York, UK

Platts PJ, Ahrends A, Gereau RE, McClean CJ, Lovett JC, Marshall AR, Pellikka PKE, Mulligan M, Fanning E, Marchant R (2010) Can distribution models help refine inventory-based estimates of conservation priority? A case study in the eastern arc forests of Tanzania and Kenya. Divers Distrib 16:628-642. https://doi.org/10.1111/j.1472-4642.2010.00668.x

Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Chang 115:365-378. https://doi.org/10.1007/s10584-012-0460-2

Pringle RM, Webb JK, Shine R (2003) Canopy structure, microclimate, and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology 84:2668-2679. https://doi.org/10.1890/02-0482

Reich PB (2012) Key canopy traits drive forest productivity. Proc Roy Soc B 279(1736):2128-2134. https://doi.org/10.1098/rspb.2011.2270

Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119-122. https://doi.org/10.1038/nature15539

Samanta A, Ganguly S, Hashimoto H, Devadiga S, Vermote E, Knyazikhin Y, Nemani RR, Myneni RB (2010) Amazon forests did not green-up during the 2005 drought. Geophys Res Lett 37:n/a-n/a. https://doi.org/10.1029/2009GL042154

Samanta A, Ganguly S, Vermote E, Nemani RR, Myneni RB (2012) Why is remote sensing of amazon forest greenness so challenging? Earth Interact 16:120420140647003. https://doi.org/10.1175/EI440.1

Schuur EAG (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165-1170. https://doi.org/10.1890/0012-9658(2003)084%5B1165:PAGCRT%5D2.0.CO%3B2

Silva B, Álava-Núñez P, Strobl S, Beck E, Bendixa J (2017) Area-wide evapotranspiration monitoring at the crown level of a tropical mountain rain forest. Remote Sens Environ 194:219-229. https://doi.org/10.1016/j.rse.2017.03.023

Souza CM Jr, Siqueira JV, Sales MH, Fonseca AV, Ribeiro JG, Numata I, Cochrane MA, Barber CP, Roberts DA, Barlow J (2013) Ten-year landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens 5:5493-5513. https://doi.org/10.3390/rs5115493

Steven MD, Malthus TJ, Baret F (2015) Towards standardization of vegetation indices. In: Thenkabail PS (ed) Remotely sensed data characterization, classification, and accuracies. Boca Raton: CRC Press Taylor & Francis Group.

Thyer M, Beckers J, Spittlehouse D, Alila Y, Winkler R (2004) Diagnosing a distributed hydrologic model for two high-elevation forested catchments based on detailed stand- and basin-scale data. Water Resour Res 40:n/a-n/a. https://doi.org/10.1029/2003WR002414

Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814-818. https://doi.org/10.1126/science.aac6759

Turnhout E, Gupta A, Weatherley-Singh J, Vijge MJ, de Koning J, Visseren-Hamakers IJ, Herold M, Lederer M (2017) Envisioning REDD+ in a post-Paris era: between evolving expectations and current practice. Wiley Interdiscip Rev Clim Chang 8:e425. https://doi.org/10.1002/wcc.425

UNEP (1997) World atlas of desertification 2ED. United Nations Environ Program, Nairobi, pp 1-182
United Nations (2015) Adoption of the Paris Agreement. Framework Convention On Climate Change. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Last accessed 18/12/2017.

Valverde T, Silvertown J (1997) Canopy closure rate and forest structure. Ecology 78:1555-1562. https://doi.org/10.1890/0012-9658(1997)078%5B1555:CCRAFS%5D2.0.CO%3B2

Weiss M, Baret F, Smith GJG, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination part Ⅱ. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37-53. https://doi.org/10.1016/j.agrformet.2003.08.001

Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553-560. https://doi.org/10.1016/j.tree.2005.07.009

Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940-943. https://doi.org/10.1126/science.1192666

Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67-80. https://doi.org/10.1016/j.agee.2008.01.014

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 July 2017
Accepted: 10 December 2017
Published: 08 January 2018
Issue date: March 2018

Copyright

© The Author(s) 2018.

Acknowledgements

Acknowledgements

We thank the students and research assistants involved in the various projects for their help in the field during data collection. We acknowledge the British Institute in Eastern Africa for logistic support during fieldwork campaigns in Kenya, Ethiopia and Tanzania. We thank the Stability of Altered Forest Ecosystems project for logistic support in Malaysian Borneo. RH, TM and AHM also thank Kementerian Negara Riset dan Teknologi (RISTEK) for permission to work in Indonesia under research permit number 178/SIP/FRP/SM/V1/2014.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return