Journal Home > Volume 4 , Issue 3
Background

After their death, Scots pine trees can remain standing for decades and sometimes up to 200 years, forming long-lasting and ecologically important structures in boreal forest landscapes. Standing dead pines decay very slowly and with time develop into 'kelo' trees, which are characterized by hard wood with silvery-colored appearance. These kelo trees represent an ecologically important, long lasting and visually striking element of the structure of natural pine-dominated forests in boreal Fennoscandia that is nowadays virtually absent from managed forest landscapes.

Methods

We examined and mapped the amount, structural features, site characteristics and spatial distribution of dead standing pine trees over a ten hectare area in an unmanaged boreal forest landscape in the Kalevala National Park in Russian Viena Karelia.

Results

The mean basal area of dead standing pine trees in the forested part of the landscape was 1.7 m2∙ha−1 and the estimated volume 12.7 m3∙ha−1. From the total number of standing dead pine trees 65% were kelo trees, with a basal area of 1.1 m2∙ha−1 and volume of 8.0 m3∙ha−1, the remainder consisting of standing dead pines along the continuum between a recently dead tree and a kelo tree. Overall, standing dead pines were distributed throughout the study area, but there was a tendency towards spatial clustering up to < 100 m distances. Standing dead pines were most commonly situated on flat ground or in the mid slope in the local topography. In addition, standing dead pines contributed to substrate diversity also by commonly having charred wood and broken tops. Based on the presence of dead pine snags in different stage of transition from a recently dead pine to a kelo with silvery surface, it seems evident that the process of kelo recruitment was continuously in action in the studied landscape.

Conclusions

Kelo trees are an omnipresent feature in natural pine-dominated forest landscapes with important contribution to forest structural and substrate diversity. Because of their longevity and extremely slow turnover dynamics and importance for biodiversity, protection of vulnerable kelo tree populations, and ensuring their continuous recruitment, should be of high priority in forest restoration and sustainable management.


menu
Abstract
Full text
Outline
About this article

Dead standing pine trees in a boreal forest landscape in the Kalevala National Park, northern Fennoscandia: amount, population characteristics and spatial pattern

Show Author's information Timo Kuuluvainen1 ( )Tuomas Aakala1Gergely Várkonyi2
Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
Finnish Environment Institute, Natural Environment Centre, Friendship Park Research Centre, Lentiirantie 342B, FI-88900 Kuhmo, Finland

Abstract

Background

After their death, Scots pine trees can remain standing for decades and sometimes up to 200 years, forming long-lasting and ecologically important structures in boreal forest landscapes. Standing dead pines decay very slowly and with time develop into 'kelo' trees, which are characterized by hard wood with silvery-colored appearance. These kelo trees represent an ecologically important, long lasting and visually striking element of the structure of natural pine-dominated forests in boreal Fennoscandia that is nowadays virtually absent from managed forest landscapes.

Methods

We examined and mapped the amount, structural features, site characteristics and spatial distribution of dead standing pine trees over a ten hectare area in an unmanaged boreal forest landscape in the Kalevala National Park in Russian Viena Karelia.

Results

The mean basal area of dead standing pine trees in the forested part of the landscape was 1.7 m2∙ha−1 and the estimated volume 12.7 m3∙ha−1. From the total number of standing dead pine trees 65% were kelo trees, with a basal area of 1.1 m2∙ha−1 and volume of 8.0 m3∙ha−1, the remainder consisting of standing dead pines along the continuum between a recently dead tree and a kelo tree. Overall, standing dead pines were distributed throughout the study area, but there was a tendency towards spatial clustering up to < 100 m distances. Standing dead pines were most commonly situated on flat ground or in the mid slope in the local topography. In addition, standing dead pines contributed to substrate diversity also by commonly having charred wood and broken tops. Based on the presence of dead pine snags in different stage of transition from a recently dead pine to a kelo with silvery surface, it seems evident that the process of kelo recruitment was continuously in action in the studied landscape.

Conclusions

Kelo trees are an omnipresent feature in natural pine-dominated forest landscapes with important contribution to forest structural and substrate diversity. Because of their longevity and extremely slow turnover dynamics and importance for biodiversity, protection of vulnerable kelo tree populations, and ensuring their continuous recruitment, should be of high priority in forest restoration and sustainable management.

Keywords: Boreal forest, Coarse Woody debris, Dead trees, Forest dynamics, Kelo, Pinus sylvestris, Snag, Tree mortality

References(41)

Aakala T (2010) Tree mortality and deadwood dynamics in late-successional boreal forests. Dissertationes Forestales 100: 41 http://www.metla.fi/dissertationes/df100.htm. Accessed 10 Mar 2017https://doi.org/10.14214/df.100
DOI
Aakala T (2017) R functions for computing tree stem volumes. Figshare. https://doi.org/10.6084/m9.figshare.4616479.v1. Accessed 10 Mar 2017

Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5(3):169-211

Atlas Karelskoy ASSR (1989) Glavnoe upravlenie geodezii i kartografi i pri Sovete Ministrov SSSR. Moscow, p 40 (in Russian)

Boch S, Prati D, Hessenmöller D, Schulze ED, Fischer M (2013) Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. PLoS One 8(1):e55461. doi:10.1371/journal.pone.0055461

Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, Čada V, Camarero JJ, Cherubini P, Cochard H, Coyea MR, Čufar K, Das AJ, Davi H, Delzon S, Dorman M, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Hereş A-M, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Kramer K, Lens F, Levanic T, Linares Calderon JC, Lloret F, Lobo-Do-Vale R, Lombardi F, López Rodríguez R, Mäkinen H, Mayr S, Mészáros I, Metsaranta JM, Minunno F, Oberhuber W, Papadopoulos A, Peltoniemi M, Petritan AM, Rohner B, Sangüesa-Barreda G, Sarris D, Smith JM, Stan AB, Sterck F, Stojanović DB, Suarez ML, Svoboda M, Tognetti R, Torres-Ruiz JM, Trotsiuk V, Villalba R, Vodde F, Westwood AR, Wyckoff PH, Zafirov N, Martínez-Vilalta J (2017) A synthesis of radial growth patterns preceding tree mortality. Glob Change Biol 23:1675-1690

Cooke HA, Hannon SJ (2011) Do aggregated harvests with structural retention conserve the cavity web of old upland forests in the boreal plains? For Ecol Manag 261(3):662-674. doi:10.1016/j.foreco.2010.11.023

Dilts TE (2015) Topography tools for ArcGIS 10.1. University of Nevada Reno. http://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9. Accessed 10 Mar 2017

Engelmark O, Kullman L, Bergeron Y (1994) Fire and age structure of Scots pine and Norway spruce in northern Sweden during the past 700 years. New Phytol 126(1):163-168

Fayt P (2003) Population ecology of the three-toed woodpecker under varying food supplies. University of Joensuu, PhD Dissertations in Biology, Joensuu, No. 21
Gorkovets VY, Rayevskaya MB, Lukashov AD (2000) The geology of the proposed Kalevala, Tuulijärvi, Koitajoki and Tolvajärvi national parks. In: Heikkilä R, Heikkilä H, Polevoi A, Yakovlev E (eds.). Biodiversity of old-growth forests and its conservation in northwestern Russia. North Ostrobothnia Regional Environment Centre. Regional Environmental Publications 158, p 159-172
Gromtsev AN (1998) Inventory of natural complexes and ecological feasibility study of Kalevala National Park. Preprint of the paper presented at the session of the Research Board of the Forest Research Institute, Karelia Research Centre, RAS, 27 November 1997. Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, p 56

Gustafsson E, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lohmus A, Martinez Pastur G, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney VJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62(7):633-645

Helmisaari H-S, Siltala T (1989) Variation in nutrient concentrations of Pinus sylvestris stems. Scand J For Res 4:443-451

Kalela A (1961) Waldvegetationszonen Finnlands und ihre klimatische Paralleltypen. Arch Soc Vanamo 16(Suppl.):65-83

Kalliola R (1966) The reduction of the area of forests in natural condition in Finland in the light of some maps based upon national forest inventories. Ann Bot Fenn 3(3):442-448

Karjalainen L, Kuuluvainen T (2002) Amount and diversity of coarse woody debris within a boreal forest landscape dominated by Pinus sylvestris in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn 36(1):147-167

Keto-Tokoi P, Kuuluvainen T (2014) Primeval forests of Finland. Cultural history, ecology and conservation. Maahenki, Porvoo, p 301

Kuuluvainen T, Mäki J, Karjalainen L, Lehtonen H (2002) Tree age distributions in old-growth forest sites in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn 36(1):169-184

Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Commun Inst For Fenn 108:1-74

Lampainen J, Kuuluvainen T, Wallenius TH, Karjalainen L, Vanha-Majamaa I (2004) Long-term forest structure and regeneration after wildfire in Russian Karelia. J Veg Sci 15(2):245-256

Lehtonen H, Kolström T (2000) Forest fire history in Viena Karelia, Russia. Scand J For Sci 15:585-590

Leikola M (1969) Havaintoja männyn paksuuskasvun loppumisesta ja puiden keloutumisesta Inarin Lapissa. Silva Fenn 3(1):50-61 (in Finnish)

Lilja S, Kuuluvainen T (2005) Structure of old Pinus sylvestris dominated forest stands along a geographic and human impact gradient in mid-boreal Fennoscandia. Silva Fenn 39(3):407-428

Lõhmus P, Kruustuk K (2010) Lichens on burnt wood in Estonia: a preliminary assessment. Folia Cryptogam Est 47:37-41

Martin K, Eadie JM (1999) Nest webs: a community-wide approach to the management and conservation of cavity-nesting forest birds. For Ecol Manag 115(2-3):243-257

Martin K, Aitken KEH, Wiebe KL (2004) Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor 106(1):5-19

Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:169

Niemelä T, Wallenius T, Kotiranta H (2002) The kelo tree, a vanishing substrate of specified wood-inhabiting fungi. Pol Bot J 47(2):91-101

R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in Macroecology. Ecography 33(1):46-50

Rouvinen S, Kuuluvainen T, Siitonen J (2002) Tree mortality in a Pinus sylvestris dominated forest landscape in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn 36(1):127-145

Santaniello F, Djupström L, Ranius T, Rudolphi J, Widenfalk O, Weslien J (2016) Effects of partial cutting on logging productivity, economic returns and dead wood in boreal pine forest. For Ecol Manag 365:152-158

Santaniello F, Djupström LB, Ranius T, Weslien J, Rudolphi J, Thor G (2017) Large proportion of wood dependent lichens in boreal pine forest are confined to old hard wood. Biodivers Conserv 26(6):1295-1310

Spribille T, Thor G, Bunnell FL, Goward T, Björck CR (2008) Lichens on dead wood: species-substrate relationships in the epiphytic lichen floras of the Pacific northwest and Fennoscandia. Ecography 31(6):741-750

Tikkanen OP, Martikainen P, Hyvärinen E, Junninen K, Kouki J (2006) Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann Zool Fenn 43(4):373-383

Vehkaoja M, Nummi P, Rikkinen J (2016) Beavers promote calicioid diversity in boreal forest landscapes. Biodivers Conserv 26:579-591

Venugopal P, Julkunen-Tiitto R, Junninen K, Kouki J (2015) Phenolic compounds in Scots pine heartwood: are kelo trees a unique woody substrate? Can J For Res 46(2):225-233

Venugopal P, Junninen K, Linnakoski R, Edman M, Kouki J (2016) Climate and wood quality have decayer-specific effects on fungal wood decomposition. For Ecol Manag 360:341-351

Wallenius T (2011) Major decline in fires in coniferous forests - reconstructing the phenomenon and seeking for the cause. Silva Fenn 45(1):139-155

Zackrisson O (1977) Influence of forest fires on the north Swedish boreal forest. Oikos 29(1):22-32

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 March 2017
Accepted: 29 June 2017
Published: 18 July 2017
Issue date: September 2017

Copyright

© The Author(s) 2017.

Acknowledgements

Acknowledgements

This work was carried out in the framework of the EBOR-project funded by the Academy of Finland (proj. no. 276255). We also thank the Finnish Environment Institute for helping in financing this research and Mr. Santeri Lesonen from the Venehjärvi village for hospitality and help in practical arrangements.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return