Journal Home > Volume 3 , Issue 4
Background

Information on above-ground biomass (AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and international levels. In many tropical developing countries,this information may be unreliable or at a scale too coarse for use at local levels. There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management and policy development improvements. Model-based methods provide an efficient framework to estimate AGB.

Methods

Using National Forest Inventory (NFI) data for a ~1,000,000 ha study area in the miombo ecoregion,Zambia,we estimated AGB using predicted canopy cover,environmental data,disturbance data,and Landsat 8 OLI satellite imagery. We assessed different combinations of these datasets using three models,a semiparametric generalized additive model (GAM) and two nonlinear models (sigmoidal and exponential),employing a genetic algorithm for variable selection that minimized root mean square prediction error (RMSPE),calculated through cross-validation. We compared model fit statistics to a null model as a baseline estimation method. Using bootstrap resampling methods,we calculated 95 % confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground plot data.

Results

Canopy cover,soil moisture,and vegetation indices were consistently selected as predictor variables. The sigmoidal model and the GAM performed similarly; for both models the RMSPE was ~36.8 tonnes per hectare (i.e.,57 % of the mean). However,the sigmoidal model was approximately 30 % more efficient than the GAM,assessed using bootstrapped variance estimates relative to a null model. After selecting the sigmoidal model,we estimated total AGB for the study area at 64,526,209 tonnes (+/- 477,730),with a confidence interval 20 times more precise than a simple design-based estimate.

Conclusions

Our findings demonstrate that NFI data may be combined with freely available satellite imagery and soils data to estimate total AGB with quantifiable uncertainty,while also providing spatially explicit AGB maps useful for management,planning,and reporting purposes.


menu
Abstract
Full text
Outline
About this article

Model-based estimation of above-ground biomass in the miombo ecoregion of Zambia

Show Author's information James Halperin1 ( )Valerie LeMay1Emmanuel Chidumayo2Louis Verchot3Peter Marshall1
Department of Forest Resources Management, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
Makeni Savanna Research Project, P.O. Box 50323, Ridgeway, Lusaka, Zambia
International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali 763537, Colombia

Abstract

Background

Information on above-ground biomass (AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and international levels. In many tropical developing countries,this information may be unreliable or at a scale too coarse for use at local levels. There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management and policy development improvements. Model-based methods provide an efficient framework to estimate AGB.

Methods

Using National Forest Inventory (NFI) data for a ~1,000,000 ha study area in the miombo ecoregion,Zambia,we estimated AGB using predicted canopy cover,environmental data,disturbance data,and Landsat 8 OLI satellite imagery. We assessed different combinations of these datasets using three models,a semiparametric generalized additive model (GAM) and two nonlinear models (sigmoidal and exponential),employing a genetic algorithm for variable selection that minimized root mean square prediction error (RMSPE),calculated through cross-validation. We compared model fit statistics to a null model as a baseline estimation method. Using bootstrap resampling methods,we calculated 95 % confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground plot data.

Results

Canopy cover,soil moisture,and vegetation indices were consistently selected as predictor variables. The sigmoidal model and the GAM performed similarly; for both models the RMSPE was ~36.8 tonnes per hectare (i.e.,57 % of the mean). However,the sigmoidal model was approximately 30 % more efficient than the GAM,assessed using bootstrapped variance estimates relative to a null model. After selecting the sigmoidal model,we estimated total AGB for the study area at 64,526,209 tonnes (+/- 477,730),with a confidence interval 20 times more precise than a simple design-based estimate.

Conclusions

Our findings demonstrate that NFI data may be combined with freely available satellite imagery and soils data to estimate total AGB with quantifiable uncertainty,while also providing spatially explicit AGB maps useful for management,planning,and reporting purposes.

Keywords: Generalized additive model, National Forest Inventory, Above-ground biomass, Miombo, REDD+, Nonlinear model, Landsat 8 OLI

References(108)

Ahrends A, Burgess ND, Milledge SA, Bulling MT, Fisher B, Smart JC, Clarke G, Mhorok BE, Lewis SL (2010) Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc Natl Acad Sci 107(33):14556-14561

Anaya JA, Chuvieco E, Palacios-Orueta A (2009) Above-ground biomass assessment in Colombia: a remote sensing approach. For Ecol Manage 257(4):1237-1246

Banskota A, Kayastha N, Falkowski MJ, Wulder MA, Froese RE, White JC (2014) Forest monitoring using Landsat time series data: a review. Can J Remote Sens 40(5):362-384

Bater CW, Coops NC, Gergel SE, LeMay V, Collins D (2009) Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing. Can J Forest Res 39(6):1080-1091

Boschetti L, Roy D, Hoffmann AA (2013) MODIS Collection 5.1 Burned Area Product-MCD45. User's Guide. Ver, 3.0.1. University of Maryland, College Park, Maryland, USA

Brink AB, Bodart C, Brodsky L, Defourney P, Ernst C, Donney F, Lupi A, Tuckova K (2014) Anthropogenic pressure in East Africa—Monitoring 20 years of land cover changes by means of medium resolution satellite data. Int J Appl Earth Obs Geoinf 28:60-69

Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer Science & Business Media, New York. p 461https://doi.org/10.1007/978-90-481-3170-9
DOI
Burrows PM, Strang RM (1964) The relation of crown and basal diameters in Rhodesian Brachystegia woodland. The Commonwealth Forestry Review Vol. 43, No. 4 (118), pp. 331-333

Cabral AIR, Vasconcelos MJ, Oom D, Sardinha R (2010) Spatial dynamics and quantification of deforestation in the central-plateau woodlands of Angola (1990-2009). Appl Geogr 31(3):1185-1193

Campbell BM, Swift MJ, Hatton J, Frost PGH (1988) Small-scale vegetation pattern and nutrient cycling in miombo woodland. In: Verhoeven JTA, Heil GW, Werger M (eds) Vegetation structure in relation to carbon and nutrient economy. SPB Academic Publishing, The Hague, pp 69-85

Carreiras J, Melo JB, Vasconcelos MJ (2013) Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sens 5(4):1524-1548

Chave J, Réjou‐Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-yrizar A, Mugasha WA, Muller Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-malavassi E, Pelissier R, Ploton P, Ryan CM, Saldarriaga J, Vieilleden G (2014) Improved allometric models to estimate the above-ground biomass of tropical trees. Glob Chang Biol 20(10):3177-3190

Chidumayo EN (1988) A re-assessment of effects of fire on miombo regeneration in the Zambian Copperbelt. J Trop Ecol 4(4):361-372

Chidumayo E, Gambiza J, Grundy I (1996) Managing miombo woodlands. In: Campbell B (ed) The Miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research, Bogor, pp 175-193, P 266
Chidumayo EN (2012) Assessment of existing models for biomass and volume calculations for Zambia. Report prepared for FAO-Zambia and the Integrated Land Use Assessment (ILUA) Phase 2 Project. Food and Agriculture Organization of the United Nations, Rome
Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York, p 428
D'Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res Biogeosci (2005-2012) 112: G4https://doi.org/10.1029/2006JG000379
DOI

Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54-75

ESRI (2012) ArcGIS desktop: release 10.1. Environmental Systems Research Institute, Redlands
FAO (2014) Zambia - Global Forest Resources Assessment 2015 - Country Report. Rome. p 76

Faßnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B (2014) Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ 154:102-114

Frost P (1996) The ecology of miombo woodlands. In: Campbell B (ed) The Miombo in transition: woodlands and welfare in Africa (pp 11-57). Center for International Forestry Research, Bogor, p 266

Fuller DO, Prince SD, Astle WL (1997) The influence of canopy strata on remotely sensed observations of savanna-woodlands. Int J Remote Sens 18(14):2985-3009

Gara TW, Murwira A, Ndaimani H, Chivhenge E, Hatendi CM (2015) Indigenous forest wood volume estimation in a dry savanna, Zimbabwe: exploring the performance of high-and-medium spatial resolution multispectral sensors. Transactions of the Royal Society of South Africa, Vol. 70, No. 3, 285-293https://doi.org/10.1080/0035919X.2015.1057269
DOI

Garcia-Gutierrez J, Gonzalez-Ferreiro E, Riquelme-Santos JC, Miranda D, Dieguez-Aranda U, Navarro-Cerrillo RM (2014) Evolutionary feature selection to estimate forest stand variables using LiDAR. Int J Appl Earth Obs Geoinf 26:119-131

GOFC-GOLD (2015) A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation. GOFC-GOLD Report version COP21-1. GOFC-GOLD Land Cover Project Office, Wageningen University, The Netherlands

González-Roglich M, Swenson JJ, Jobbágy EG, Jackson RB (2014) Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. Forest Ecol Manag 331:71-78

González-Roglich M, Swenson JJ (2016) Tree cover and carbon mapping of Argentine savannas: scaling from field to region. Remote Sens Environ 172:139-147

GRZ (Government of the Republic of Zambia) (1968) The Republic of Zambia - National rainfall map, 1: 3, 000, 000. Government Printer, Lusaka. Accessed online at http://eusoils.jrc.ec.europa.eu/esdb_archive/eudasm/africa/lists/czm.htm on 11 April, 2014
GRZ (Government of the Republic of Zambia) (1976) Vegetation map, 1: 500, 000. Survey Department, Lusaka, Sheets 1 - 9
GRZ (Government of the Republic of Zambia) (1986) The Republic of Zambia - National soil map, 1: 3, 000, 000. Government Printer, Lusaka. Accessed online at http://esdac.jrc.ec.europa.eu/resource-type/national-soil-maps-eudasm on 21 July 2016
GRZ (Government of the Republic of Zambia) (2014) Integrated Land Use Assessment Phase 2 - Zambia Biophysical Field Manual, version March 25, 2014. Forestry Department. Ministry of Lands, Natural Resources and Environmental Protection in cooperation with Food and Agriculture Organization (FAO), Lusaka

Gregoire TG (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J Forest Res 28(10):1429-1447

Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2):147-186

Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157(2):89-100

Gumbo DJ, Mumba KY, Kaliwile MM, Moombe KB, Mfuni TI (2016) Agrarian changes in the Nyimba District of Zambia. In: Deakin L, Kshatriya M, Sunderland T (eds) Agrarian change in tropical landscapes. Center for International Forestry Research, Bogor, pp 234-268

Halperin J, LeMay V, Coops N, Verchot L, Marshall P, Lochhead K (2016) Canopy cover estimation in miombo woodlands of Zambia: comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods. Remote Sens Environ 179:170-182

Hall RJ, Skakun RS, Arsenault EJ, Case BS (2006) Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. Forest Ecol Manag 225(1):378-390

Hansen MC, DeFries RS, Townshend JRG, Marufu L, Sohlberg R (2002) Development of a MODIS tree cover validation data set for Western Province, Zambia. Remote Sens Environ 83(1):320-335

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160): 850-853https://doi.org/10.1126/science.1244693
DOI

Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44(1):1-12

Helmer EH, Brandeis TJ, Lugo AE, Kennaway T (2008) Factors influencing spatial pattern in tropical forest clearance and stand age: implications for carbon storage and species diversity. J Geophys Res 113: G02S04. doi: 10.1029/2007JG000568https://doi.org/10.1029/2007JG000568
DOI

Hengl T, Heuvelink GB, Kempen B, Leenaars JG, Walsh MG, Shepherd KD, Sila A, MacMillan RA, de Jesus JM, Tamene L, Tondoh JE (2015) Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS One 10(6):e0125814

Hijmans RJ, van Etten J, Mattiuzzi M, Sumner M, Greenberg J, Lamigueiro O, Bevan A, Racine E, Shortridge A (2015) Raster: geographic analysis and modeling with raster data. R package version 2., pp 3-41, http://cran.r-project.org/web/packages/raster/index.html
Holmgren PLG, Marklund F (2007) National forest monitoring systems: purposes, options and status. In: Freer-Smith PH, Broadmeadow MS, Lynch JM (eds) Forestry and climate change. CAB International, UK, pp 163-173https://doi.org/10.1079/9781845932947.0163
DOI

Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43-54

Isango JA (2007) Stand structure and tree species composition of Tanzania miombo woodlands: a case study from miombo woodlands of community based forest management in Iringa District. Working Papers of the Finnish Forest Research Institute 50:43-56

Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understory illumination: canopy closure, canopy cover and other measures. Forestry 72(1):59-74

Jin S, Sader SA (2005) Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens Environ 94(3):364-372

Justice CO, Vermote E, Townshend JRG, DeFries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Knyazikhin Y, Running SW, Nemani RR, Zhengming W, Huete AR, Van Leeuwen W, Wolfe RE, Giglio L, Muller J-P, Lewis P, Barnsley MJ (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. Geosci Remote Sens IEEE Trans 36(4):1228-1249

Kashindye A, Mtalo E, Mpanda MM, Liwa E, Giliba R (2013) Multi-temporal assessment of forest cover, stocking parameters and above-ground tree biomass dynamics in miombo woodlands of Tanzania. Afr J Environ Sci Technol 7(7):611-623

Kaufman YJ, Tanre D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Geosci Remote Sens IEEE Trans 30(2):261-270

Kattenborn T, Maack J, Faßnacht F, Enßle F, Ermert J, Koch B (2015) Mapping forest biomass from space - Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. Intl Appl Earth Observ Geoinform 35:359-367

Key CH, Benson NC (2006) Landscape assessment: remote sensing of severity, the Normalized Burn Ratio. In: Lutes DC (ed) FIREMON: fire effects monitoring and inventory system. RMRS-GTR-164-CD. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins
Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th ed. McGraw Hill, New York

Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above‐ground biomass in three biomes. Glob Ecol Biogeogr 11(5):393-399

Lefsky MA, Cohen WB (2003) Selection of remotely sensed data. In: Wulder M, Franklin SE (eds) Remote sensing of forest environments: concepts and case studies. Springer Science & Business Media, Springer US, pp 535-546https://doi.org/10.1007/978-1-4615-0306-4_2
DOI

Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2016) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63-105. doi:10.1080/17538947.2014.990526

Makhado RA, Mapaure I, Potgieter MJ, Luus-Powell WJ, Saidi AT (2014) Factors influencing the adaptation and distribution of Colophospermum mopane in southern Africa's mopane savannas - a review. Bothalia 44(1):9

Magnussen S, Mandallaz D, Breidenbach J, Lanz A, Ginzler C (2014) National forest inventories in the service of small area estimation of stem volume. Can J Forest Res 44(9):1079-1090

Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim TK (2006) A Landsat surface reflectance dataset for North America, 1990-2000. Geosci Remote Sens Lett IEEE 3(1):68-72

Mauya EW, Ene LT, Bollandsås OM, Gobakken T, Næsset E, Malimbwi RE, Zahabu E (2015) Modelling aboveground forest biomass using airborne laser scanner data in the miombo woodlands of Tanzania. Carbon Balance Manage 10(1):1-16

Mayes MT, Mustard JF, Melillo JM (2015) Forest cover change in miombo woodlands: modeling land cover of African dry tropical forests with linear spectral mixture analysis. Remote Sens Environ 165:203-215

McRoberts RE, Tomppo EO, Næsset E (2010) Advances and emerging issues in national forest inventories. Scand J Forest Res 25(4):368-381

McRoberts RE, Magnussen S, Tomppo EO, Chirici G (2011) Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sens Environ 115(12):3165-3174

McRoberts RE, Næsset E, Gobakken T (2015) The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass. Annals of Forest Science. doi: 10.1007/s13595-015-0485-6https://doi.org/10.1007/s13595-015-0485-6
DOI

Mitchard ET, Meir P, Ryan CM, Woollen ES, Williams M, Goodman LE, Mucavele J, Watts P, Woodhouse I, Saatchi SS (2013) A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique. Plant Ecol Divers 6(1):159-170

Moisen GG, Frescino TS (2002) Comparing five modelling techniques for predicting forest characteristics. Ecol Model 157(2):209-225

Moisen GG, Freeman EA, Blackard JA, Frescino TS, Zimmermann NE, Edwards TC Jr (2006) Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol Model 199(2):176-187

Moussavi MS, Abdalati W, Scambos T, Neuenschwander A (2014) Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data. Int J Remote Sens 35(13):5263-5279

Næsset E, Ørka HO, Solberg S, Bollandsås OM, Hansen EH, Mauya E, Zahabu E, Malimbwi R, Chamuya N, Olsson H, Gobakken T (2016) Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: a comparison of estimated precision. Remote Sens Environ 175:282-300

Opsomer JD, Breidt FJ, Moisen GG, Kauermann G (2007) Model-assisted estimation of forest resources with generalized additive models. J Am Stat Assoc 102(478):400-409

Packalén P, Temesgen H, Maltamo M (2012) Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory. Can J Remote Sens 38(5):557-569

Pereira CR (2006) Estimating and mapping forest inventory variables using the k-NN method: Mocuba District case study - Mozambique. PhD dissertation, Universita Tuscia, Viterbo, Italy. p 86

Pflugmacher D, Cohen WB, Kennedy RE, Yang Z (2014) Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens Environ 151:124-137

Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens Environ 114(5):1053-1068

R Development Core Team (2015) R: A Language and Environment for Statistical Computing, version 3.2.2 (August 2015). R Foundation for Statistical Computing, Vienna, http://www.R-project.org
Ribeiro NS, Saatchi SS, Shugart HH, Washington‐Allen RA (2008) Aboveground biomass and leaf area index (LAI) mapping for Niassa Reserve, northern Mozambique. J Geophys Res Biogeosci (2005-2012) 113: G3https://doi.org/10.1029/2007JG000550
DOI
Ribeiro N, Cumbana M, Mamugy F, Chaúque A (2012) Remote sensing of biomass in the miombo woodlands of southern Africa: opportunities and limitations for research. In: Fatoyinbo (Ed.) Remote Sensing of Biomass - Principles and Applications, p 77-98. ISBN: 978-953-51-0313-4, InTech, Rijeka, Croatiahttps://doi.org/10.5772/16608
DOI
Rouse JW, Jr Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Freden SC, Mercanti EP, Becker MA (eds) Technical Presentations Sec. A, vol 1. NASA Science and Technology Information Office, Washington, pp 309-317

Ryan CM, Williams M (2011) How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecol Appl 21(1):48-60

Ryan CM, Williams M, Grace J (2011) Above‐and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43(4):423-432

Ryan CM, Hill T, Woollen E, Ghee C, Mitchard E, Cassells G, Grace J, Woodhouse IH, Williams M (2012) Quantifying small‐scale deforestation and forest degradation in African woodlands using radar imagery. Glob Change Biol 18(1):243-257

Samimi C, Kraus T (2004) Biomass estimation using Landsat-TM and-ETM+. Towards a regional model for Southern Africa? GeoJournal 59(3):177-187

Sankaran M, Ratnam J, Hanan N (2008) Woody cover in African savannas: the role of resources, fire and herbivory. Glob Ecol Biogeogr 17(2):236-245

Sawe TC, Munishi PK, Maliondo SM (2014) Woodlands degradation in the Southern Highlands miombo of Tanzania: implications on conservation and carbon stocks. Int J Biodiv Conserv 6(3):230-237

Scrucca L (2013) GA: a package for Genetic Algorithms in R. J Stat Softw 53(4):1-37

Sedano F, Gómez D, Gong P, Biging GS (2008) Tree density estimation in a tropical woodland ecosystem with multiangular MISR and MODIS data. Remote Sens Environ 112(5):2523-2537

Shearman P, Bryan J, Laurance WF (2012) Are we approaching 'peak timber' in the tropics? Biol Conserv 151(1):17-21

Sinha S, Jeganathan C, Sharma LK, Nathawat MS (2015) A review of radar remote sensing for biomass estimation. Int J Environm Sci Techn 12(5):1779-1792

Skutsch MM, Ba L (2010) Crediting carbon in dry forests: the potential for community forest management in West Africa. Forest Policy Econ 12(4):264-270

Solberg S, Gizachew B, Næsset E, Gobakken T, Bollandsås OM, Mauya EW, Olsson H, Malimbwi R, Zahabu E (2015) Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+. Carbon Balance Manage 10(1):1-14

Ståhl G, Saarela S, Schnell S, Holm S, Breidenbach J, Healey SP, Patterson PL, Magnussen S, Næsset E, McRoberts RE, Gregoire TG (2016) Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. Forest Ecosyst 3(1):1

Stringer LC, Dougill AJ, Thomas AD, Spracklen DV, Chesterman S, Speranza CI, Rueff H, Riddell M, Williams M, Beedy T, Abson DJ, Klintenberg P, Syampungani S, Powell P, Palmer AR, Seely MK, Mkwambisi DD, Falcao M, Sitoe A, Ross S, Kopolo G (2012) Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environ Sci Policy 19:121-135

Suberu MY, Bashir N, Mustafa MW (2014) Over use of wood-based bioenergy in selected sub-Saharan Africa countries: review of unconstructive challenges and suggestions. J Clean Prod. doi: 10.1016/j.jclepro.2014.04.014https://doi.org/10.1016/j.jclepro.2014.04.014
DOI

Suganuma H, Abe Y, Taniguchi M, Tanouchi H, Utsugi H, Kojima T, Yamada K (2006) Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. Forest Ecol Manage 222(1):75-87

Timberlake JR (1995) Colophospermum mopane: annotated bibliography and review. The Zimbabwe Bulletin of Forestry Research, No. 11. ISBN: 0-7974-1420-7., p 49
Timberlake J, Chidumayo EN (2011) Miombo ecoregion vision report. Occasional Publications in Biodiversity No. 20 Biodiversity Foundation for Africa, Bulawayo

Timilsina N, Staudhammer CL (2012) Individual tree mortality model for slash pine in Florida: a mixed modeling approach. South J Appl Forest 36(4):211-219

Tiwari AK, Singh JS (1984) Mapping forest biomass in India through aerial photographs and nondestructive field sampling. Appl Geogr 4(2):151-165

Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sens Environ 92(1):1-20

USGS (United States Geological Survey) (2004) Shuttle Radar Topography Mission, 1 Arc Second SRTM s14e29, s14e30, s14e31, s15e29, s15e30, s15e31, s16e29, s16e30, s16e31, Unfilled Unfinished 2.0. Global Land Cover Facility, University of Maryland, College Park, February 2000

Venables WN, Dichmont CM (2004) GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Res 70(2):319-337

Wang Y, LeMay VM, Baker TG (2007) Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations using a nonlinear mixed-effects model approach. Can J Forest Res 37(8):1390-1403

Wood SN (2006) Generalized Additive Models: an introduction with R. Chapman & Hall/CRC Press, Chicagohttps://doi.org/10.1201/9781420010404
DOI
Wood SN (2015) Reference manual for mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation, v 1.8-9 (30 Oct 2015). Available at: http://cran.r-project.org/web/packages/mgcv/index.html

Wu W, De Pauw E, Helldén U (2013) Assessing woody biomass in African tropical savannahs by multiscale remote sensing. Int J Remote Sens 34(13):4525-4549

Wulder MA, White JC, Nelson RF, Næsset E, Ørka HO, Coops NC, Hilker T, Bater CW, Gobakken T (2012) Lidar sampling for large-area forest characterization: a review. Remote Sens Environ 121:196-209

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 June 2016
Accepted: 10 July 2016
Published: 10 July 2016
Issue date: December 2016

Copyright

© 2016 The Author(s).

Acknowledgements

Acknowledgements

The authors wish to thank Dr. Nicholas Coops, Dr. Davison Gumbo, Mr. Kaala Moombe, Mr. Joel Lwambo, Mr. Martin Lyambai, Mr. Andrew Goods Nkoma, Chief Nyalugwe, Chief Ndake, Chieftaness Mwape, Chief Luembe, Mrs. Bertha Kauseni, Ms. Rhoda Chiluba, Mr. Shadreck Ngoma, Mr. Sylvester Siame, Mr. Geoffrey Tebuho, Mr. Susiku Muyapekwa, Mr. Smart Lungu, Mr. Saule Lungu, Mr. Moses Ngulube, Dr. Julian Fox, Mr. Abel Siampale, and the residents of Nyimba District, Zambia. We also wish to thank two anonymous reviewers for their helpful comments and suggestions.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return