Journal Home > Volume 3 , Issue 2
Background

The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L.) is an interesting option for middle Europe, yielding high prices on the timber market.

Methods

A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments.

Results

The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion.

Conclusions

Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees strongly supports the idea of the inclusion of wild cherry within agroforestry systems as an option for carbon sequestration.


menu
Abstract
Full text
Outline
About this article

Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study

Show Author's information Christopher Morhart ( )Jonathan P. SheppardJohanna K. SchulerHeinrich Spiecker
Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University Freiburg, Tennenbacher Str. 4, D- 79106 Freiburg, Germany

Abstract

Background

The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L.) is an interesting option for middle Europe, yielding high prices on the timber market.

Methods

A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments.

Results

The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion.

Conclusions

Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees strongly supports the idea of the inclusion of wild cherry within agroforestry systems as an option for carbon sequestration.

Keywords: Biomass, Stem, Allometry, Carbon sequestration, Bark, Branch, Nutrient content, Agroforestry

References(71)

Adler A, Verwijst T, Aronsson P (2005) Estimation and relevance of bark proportion in a willow stand. Biomass Bioenerg 29(2):102-113. doi:10.1016/j.biombioe.2005.04.003

Alberti G, Candido P, Peressotti A, Turco S, Piussi P, Zerbi G (2005) Aboveground biomass relationships for mixed ash (Fraxinus excelsior L. and Ulmus glabra Hudson) stands in Eastern Prealps of Friuli Venezia Giulia (Italy). Ann For Sci 62(8):831-836. doi:10.1051/forest:2005089

Alberti G, Marelli A, Piovesana D, Peressotti A, Zerbi G, Gottardo E, Bidese F (2006) Carbon stocks and productivity in forest plantations (Kyoto forests) in Friuli Venezia Giulia (Italy). Forest@ 3(4):488-495. doi:10.3832/efor0414-0030488

Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99(1-3):15-27. doi:10.1016/S0167-8809(03)00138-5

Alriksson A, Eriksson HM (1998) Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. For Ecol Manag 108(3): 261-273. doi: 10.1016/S0378-1127(98)00230-8https://doi.org/10.1016/S0378-1127(98)00230-8
DOI

André F, Jonard M, Ponette Q (2010) Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci Total Environ 408(11):2285-2294. doi:10.1016/j.scitotenv.2010.02.040

André F, Ponette Q (2003) Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standards stand in Chimay (Belgium). Ann For Sci 60(6):489-502. doi:10.1051/forest:2003042

Axelsson B, Gärdefors D, Hytteborn H, Lohm U, Persson T, Tenow O (1972) Estimation of leaf number and leaf biomass of Hazel Corylus avellana by two methods. Oikos 23(2):281-283. doi:10.2307/3543419

Balandier P, Dupraz C (1999) Growth of widely spaced trees. A case study from young agroforestry plantations in France. Agroforest Syst 43(1):151-167. doi:10.1023/A:1026480028915

Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2(1):49-53. doi:10.1139/x72-009

Cifuentes Jara M, Henry M, Réjou-Méchain M, Wayson C, Zapata-Cuartas M, Piotto D, Alice Guier F, Castañeda Lombis H, Castellanos López E, Cuenca Lara R, Cueva Rojas K, Del Águila Pasquel J, Duque Montoya Á, Fernández Vega J, Jiménez Galo A, López O, Marklund L, Michel Fuentes J, Milla F, Návar Chaidez J, Ortiz Malavassi E, Pérez J, Ramírez Zea C, Rangel García L, Rubilar Pons R, Saint-André L, Sanquetta C, Scott C, Westfall J (2015) Guidelines for documenting and reporting tree allometric equations. Ann For Sci 72(6):763-768. doi:10.1007/s13595-014-0415-z

Clough BF, Scott K (1989) Allometric relationships for estimating above-ground biomass in six mangrove species. For Ecol Manag 27(2): 117-127. doi: 10.1016/0378-1127(89)90034-0https://doi.org/10.1016/0378-1127(89)90034-0
DOI
Coello J, Desombre V, Becquey J, Gonin P, Ortisset J, Baiges T, Piqué M (2013) Wild cherry (Prunus avium) for high quality timber. In: Government of Catalonia MoALFFaNE, Catalan Forest Ownership Centre (ed) Ecology and silviculture of the main valuable broadleaved species in the Pyrenean area and neighbouring regions, Santa Perpètua de Mogoda, Spain., pp 13-20
Dagnelie P, Palm R, Rondeux J, Thill A (1999) Tables de cubage des arbres et des peuplements forestiers, 2nd edn. Les Presses Agronomiques de Gembloux, Gembloux, Belgique
DWD (Deutscher Wetterdienst) (2015) Web-based Weather Request and Distribution System (WebWerdis). http://www.dwd.de/webwerdis. Accessed 15 February 2013
Ducci F, Cuyper B, Rogatis A, Dufour J, Santi F (2013) Wild Cherry Breeding (Prunus avium L.). In: Pâques LE (ed) Forest Tree Breeding in Europe, vol 25. Springer, Netherlands, pp 463-511https://doi.org/10.1007/978-94-007-6146-9_10
DOI
Evans J (1984) Silviculture of broadleaved woodland. Forestry Commission bulletin, vol 62. H.M. Stat. Off, London
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320-2322. doi: 10.1126/science.1058629https://doi.org/10.1126/science.1058629
DOI
Forrester DI, Bauhus J, Cowie AL (2006) Carbon allocation in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Improving Productivity in Mixed-Species Plantations. For Ecol Manag 233(2-3): 275-284. doi: 10.1016/j.foreco.2006.05.018https://doi.org/10.1016/j.foreco.2006.05.018
DOI
Guidi W, Piccioni E, Ginanni M, Bonari E (2008) Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy. Biomass Bioenerg 32: 518-524. doi: 10.1016/j.biombioe.2007.11.012https://doi.org/10.1016/j.biombioe.2007.11.012
DOI

Hackenberg J, Morhart C, Sheppard J, Spiecker H, Disney M (2014) Highly accurate tree models derived from terrestrial laser scan data: a method description. Forests 5(5):1069-1105. doi:10.3390/f5051069

Hamilton GJ (1975) Forest mensuration handbook. Forestry Commission Booklet, Vol 39. Forestry Commission, London
Hemery G, Clark JR, Aldinger E, Claessens H, Malvolti ME, O'Connor E, Raftoyannis Y, Savill PS, Brus R (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83(1): 65-81. doi: 10.1093/forestry/cpp034https://doi.org/10.1093/forestry/cpp034
DOI
Henningsen A, Hamann, JD (2007) systemfit: A Package for Estimating Systems of Simultaneous Equations in R. J Stat Softw 23(4). doi: 10.18637/jss.v023.i04https://doi.org/10.18637/jss.v023.i04
DOI
IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer, Geneva, Switzerland
Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2003) Gehalte chemischer Elemente in Baumkompartimenten. Literaturstudie und Datensammlung. Berichte des Forschungszentrums, Reihe B, vol 69. University of Göttingen
Joyce PM (1998) Growing broadleaves: Silvicultural guidelines for ash, sycamore, wild cherry, beech and oak in Ireland. COFORD, Dublin
Kimmins JP (1977) Evaluation of the consequences for future tree productivity of the loss of nutrients in whole-tree harvesting. For Ecol Manag 1: 169-183. doi: 10.1016/0378-1127(76)90019-0https://doi.org/10.1016/0378-1127(76)90019-0
DOI
Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindeorth
Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220: 480-504. doi: 10.1016/j.ecolmodel.2008.10.018https://doi.org/10.1016/j.ecolmodel.2008.10.018
DOI
Makundi W, Sathaye J (2004) GHG Mitigation Potential and Cost in Tropical Forestry — Relative Role for Agroforestry. In: Wassmann R, Vlek P (eds) Tropical Agriculture in Transition — Opportunities for Mitigating Greenhouse Gas Emissions? Springer Netherlands, pp 235-260. doi: 10.1007/978-94-017-3604-6_13
DOI
Maniatis D, Saint André L, Temmerman M, Malhi Y, Beeckman H (2011) The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. iForest - Biogeosci Forest 4(4): 150-159. doi: 10.3832/ifor0575-004https://doi.org/10.3832/ifor0575-004
DOI
Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V. 2 approach. Ecol Model 164(2-3): 177-199. doi: 10.1016/S0304-3800(02)00419-2https://doi.org/10.1016/S0304-3800(02)00419-2
DOI

Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforest Syst 61-62(1):281-295. doi:10.1023/B:AGFO.0000029005.92691.79

Morhart C, Sheppard J, Spiecker H (2013) Above ground leafless woody biomass and nutrient content within different compartments of a P. maximowicii × P. trichocarpa poplar clone. Forests 4(2):471-487. doi:10.3390/f4020471

Morhart C, Douglas GC, Dupraz C, Graves AR, Nahm M, Paris P, Sauter UH, Sheppard J, Spiecker H (2014) Alley coppice—a new system with ancient roots. Ann For Sci 71(5): 527-542. doi: 10.1007/s13595-014-0373-5https://doi.org/10.1007/s13595-014-0373-5
DOI

Nair PKR, Mohan Kumar B, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172(1):10-23. doi:10.1002/jpln.200800030

Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108: 237-307. doi: 10.1016/S0065-2113(10)08005-3https://doi.org/10.1016/S0065-2113(10)08005-3
DOI
Otter M (1954) Le cerisier, son importance sylviculturale et son traitement. Schweiz Forstw 105(12): 697-711
Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4): 573-593

Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31(5):865-878. doi:10.1139/x00-202

Peichl M, Thevathasan NV, Gordon A, Huss J, Abohassan R (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, Southern Ontario, Canada. Agroforest Syst 66(3):243-257. doi:10.1007/s10457-005-0361-8

Picard N, Saint-André L, Henry M (2012) Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Rome, Montpellier
Pretzsch H (2010) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin Heidelberghttps://doi.org/10.1007/978-3-540-88307-4
DOI
Pryor SN (1988) The silviculture and yield of wild cherry. Forestry Commission bulletin, vol. 75. Her Majesty's Stationery Office, London
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available online at http://www.R-project.org/

Röös M (1994) Ertragstafel für Wildkirsche (Prunus avium L.) in Nordwest-Deutschland. Allg Forst Jagdztg 165(1):13-18

Roxburgh SH, Paul KI, Clifford D, England, JR, Raison RJ (2015) Guidelines for constructing allometric models for the prediction of woody biomass: How many individuals to harvest? Ecosphere 6(3): art38. doi: 10.1890/ES14-00251.1
DOI
Savill PS (1991) The silviculture of trees used in British forestry. CAB International, Wallingford
Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforest Syst 60(2): 123-130. doi: 10.1023/B:AGFO.0000013267.87896.41https://doi.org/10.1023/B:AGFO.0000013267.87896.41
DOI

Singh P, Lodhiyal LS (2009) Biomass and Carbon Allocation in 8-year-old Poplar (Populus deltoides Marsh) Plantation in Tarai Agroforestry Systems of Central Himalaya, India. New York Sci J 2(6):49-53

Spiecker H (2006) Minority tree species-a challenge for multi-purpose forestry. In: Diaci J (ed) Nature-based forestry in Central Europe: Alternatives to industrial forestry and strict preservation. Biotechnical Faculty, Department of Forestry and Renewable Forest Resources, Ljubljana, pp 47-59

Spiecker M, Spiecker H (1988) Erziehung von Kirschenwertholz. AFZ 43(20):562-565

Spiecker M (1994) Wachstum und Erziehung wertvoller Waldkirschen. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg, Germany

Springmann S, Rogers R, Spiecker H (2011) Impact of artificial pruning on growth and secondary shoot development of wild cherry (Prunus avium L.). For Ecol Manag 261(3):764-769. doi:10.1016/j.foreco.2010.12.007

Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64(1):209-210. doi:10.2307/1937343

Thies M, Hein S, Spiecker H (2009) Results of a Questionnaire on Management of Valuable Broadleaved Forests in Europe. In: Spiecker H, Hein S, Makkonen-Spiecker K, Thies M (eds) Valuable broadleaved forests in Europe. Brill, Leiden, Boston, pp 27-42https://doi.org/10.1163/ej.9789004167957.i-256
DOI

Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3(2):332-352. doi:10.3390/f3020332

Toader E (2009) Determination of bark's thickness in wild cherry (Prunus avium L.) at Arad Forest Authority. Studia Universitatis "Vasile Goldis" Seria Stiintele Vietii (Life Sciences Series) 19(2):365-371

Uri V, Tullus H, Lõhmus K (2002) Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. For Ecol Manag 161(1-3):169-179. doi:10.1016/S0378-1127(01)00478-9

Uri V, Vares A, Tullus H, Kanal A (2007) Above-ground biomass production and nutrient accumulation in young stands of silver birch on abandoned agricultural land. Biomass Bioenerg 31(4):195-204. doi:10.1016/j.biombioe.2006.08.003

van Laar A, Akça A (1997) Forest mensuration, 1st edn. Cuvillier, Göttingen
VDLUFA (Association of German Agricultural Analytic and Research Institutes) (1976) Methods Book Ⅲ "The chemical analysis of feedstuffs " (1st-8th supplement delivery), 3rd edn. VDLUFA-Verlag, Darmstadt
VDLUFA (Association of German Agricultural Analytic and Research Institutes) (1991) Methods Book I "Soil Analysis" (1st-6th supplement delivery), 4th edn. VDLUFA-Verlag, Darmstadt
VDLUFA (Association of German Agricultural Analytic and Research Institutes) (2011) Methods Book Ⅶ "Environmental Analytics", 4th edn. VDLUFA-Verlag, Darmstadt

Wang JR, Letchford T, Comeau P, Kimmins JP (2000) Above- and below-ground biomass and nutrient distribution of a paper birch and subalpine fir mixed-species stand in the Sub-Boreal Spruce zone of British Columbia. For Ecol Manag 130(1-3):17-26. doi:10.1016/S0378-1127(99)00193-0

Wang JR, Zhong AL, Simard SW, Kimmins JP (1996) Aboveground biomass and nutrient accumulation in an age sequence of paper birch (Betula papyrifera) in the Interior Cedar Hemlock zone, British Columbia. For Ecol Manag 83(1-2):27-38. doi:10.1016/0378-1127(96)03703-6

Wassenberg M, Chiu H, Guo W, Spiecker H (2015) Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 29(2):551-561. doi:10.1007/s00468-014-1134-7

Wright TW, Will GM (1958) The nutrient content of Scots and Corsican pines growing on sand dunes. Forestry 31(1):13-25. doi:10.1093/forestry/31.1.13

Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Mon 4:1-63

Zeng WS, Tang SZ (2011) Bias Correction in Logarithmic Regression and Comparison with Weighted Regression for Nonlinear Models. Nature Preceedings. doi.10.1038/npre.2011.6708.1https://doi.org/10.1038/npre.2011.6708.1
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 August 2015
Accepted: 08 February 2016
Published: 11 February 2016
Issue date: June 2016

Copyright

© 2016 Morhart et al.

Acknowledgements

Acknowledgements

The authors would like to thank, Cristina Prado Rubio, Benjamin Goebel, Greta Ehrhart, Brian Shaw, George Ciubotaru and Nicoleta Cristea for assistance with data collection and processing. The authors would also like to thank Felix Baab for his valuable support. This research was supported by the EU FP7 project StarTree (Grant Agreement Number 311919), the Federal Ministry of Education and Research (BMBF) within the AGROCOP project (support code 033L051B) and the German Federal Ministry of Food and Agriculture (BMEL) within the project Agro-Wertholz (support code 22031112).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return