Journal Home > Volume 2 , Issue 3
Background

Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However,optical images of land surfaces are generally contaminated when clouds are present or rain occurs.

Methods

To estimate the actual reflectance of land surfaces masked by clouds and potential rain,3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City,DaXing'AnLing Mountain in Inner Mongolia,China. The canopy height model (CHM) from lidar data were used to extract individual tree structures (location,height,crown width). Field measurements related tree height to diameter of breast height (DBH),lowest branch height and leaf area index (LAI). Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID,high-resolution optical remote sensing images were simulated and validated with available satellite images.

Results

Evaluations on spatial texture,spectral values and directional reflectance were conducted to show comparable results.

Conclusions

The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.


menu
Abstract
Full text
Outline
About this article

A 3D approach to reconstruct continuous optical images using lidar and MODIS

Show Author's information HuaGuo Huang( )Jun Lian
Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China

Abstract

Background

Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However,optical images of land surfaces are generally contaminated when clouds are present or rain occurs.

Methods

To estimate the actual reflectance of land surfaces masked by clouds and potential rain,3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City,DaXing'AnLing Mountain in Inner Mongolia,China. The canopy height model (CHM) from lidar data were used to extract individual tree structures (location,height,crown width). Field measurements related tree height to diameter of breast height (DBH),lowest branch height and leaf area index (LAI). Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID,high-resolution optical remote sensing images were simulated and validated with available satellite images.

Results

Evaluations on spatial texture,spectral values and directional reflectance were conducted to show comparable results.

Conclusions

The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

Keywords: Optical, High resolution, Lidar, Temporal interpolation, 3D model

References(54)

Adams T, Beets P, Parrish C (2012) Extracting more data from LiDAR in forested areas by analyzing waveform shape. Remote Sens 4(3): 682-702.doi:10.3390/rs4030682https://doi.org/10.3390/rs4030682
DOI
Ahl DE, Gower ST, Burrows SN, Shabanov NV, Myneni RB, Knyazikhin Y (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens Environ 104(1): 88-95.doi:10.1016/j.rse.2006.05.003https://doi.org/10.1016/j.rse.2006.05.003
DOI
Antonarakis AS, Richards KS, Brasington J, Bithell M, Muller E (2008) Retrieval of vegetative fluid resistance terms for rigid stems using airborne lidar. J Geophys Res 113(G2): G02S07.doi:10.1029/2007JG000543https://doi.org/10.1029/2007JG000543
DOI
Arno J, Escola A, Valles JM, Llorens J, Sanz R, Masip J, Palacin J, Rosell-Polo JR (2013) Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agric 14(3): 290-306.doi:10.1007/s11119-012-9295-0https://doi.org/10.1007/s11119-012-9295-0
DOI
Barbier N, Proisy C, Vega C, Sabatier D, Couteron P (2011) Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations. Remote Sens Environ 115(1): 167-179. doi:10.1016/j.rse.2010.08.015https://doi.org/10.1016/j.rse.2010.08.015
DOI
Barry KM, Newnham GJ, Stone C (2009) Estimation of chlorophyll content in Eucalyptus globulus foliage with the leaf reflectance model PROSPECT. Agr Forest Meteorol 149(6-7): 1209-1213, http://dx.doi.org/10.1016/j.agrformet.2009.01.005https://doi.org/10.1016/j.agrformet.2009.01.005
DOI
Canisius F, Chen JM (2007) Retrieving forest background reflectance in a boreal region from Multi-anglo Imaging SpectroRadiometer (MISR) data. Remote Sens Environ 107(1-2): 312-321. doi:10.1016/j.rse.2006.07.023https://doi.org/10.1016/j.rse.2006.07.023
DOI
Chen G, Wulder MA, White JC, Hilker T, Coops NC (2012) Lidar calibration and validation for geometric-optical modeling with Landsat imagery. Remote Sens Environ 124(0): 384-393, http://dx.doi.org/10.1016/j.rse.2012.05.026https://doi.org/10.1016/j.rse.2012.05.026
DOI
Croft H, Chen JM, Zhang Y, Simic A (2013) Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data. Remote Sens Environ 133(0): 128-140, http://dx.doi.org/10.1016/j.rse.2013.02.006https://doi.org/10.1016/j.rse.2013.02.006
DOI
Delbart N, Kergoat L, Le Toan T, Lhermitte J, Picard G (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97(1): 26-38.doi: 10.1016/j.rse.2013.02.006https://doi.org/10.1016/j.rse.2013.02.006
DOI
Fang H, Wei S, Liang S (2012) Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens Environ 119: 43-54. doi:10.1016/j.rse.2011.12.006https://doi.org/10.1016/j.rse.2011.12.006
DOI
Feng M, Niu Z (2014) Chlorophyll content retrieve of vegetation using Hyperion data based on empirical models. Remote Sens Land Resour 26(1): 71-77. doi: 10.6046/gtzyyg.2014.01.13
Gao F, Anderson MC, Kustas WP, Houborg R (2014) Retrieving leaf area index from landsat using MODIS LAI products and field measurements. IEEE Geosci Remote Sens Lett 11(4): 773-777.doi: 10.1109/lgrs.2013.2278782https://doi.org/10.1109/LGRS.2013.2278782
DOI
Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44(8): 2207-2218.doi: 10.1109/tgrs.2006.872081https://doi.org/10.1109/TGRS.2006.872081
DOI
García Millán VE, Sánchez-Azofeifa A, Málvarez García GC, Rivard B (2014) Quantifying tropical dry forest succession in the Americas using CHRIS/PROBA. Remote Sens Environ 144(0): 120-136, http://dx.doi.org/10.1016/j.rse.2014.01.010https://doi.org/10.1016/j.rse.2014.01.010
DOI
Hilker T, Wulder MA, Coops NC, Seitz N, White JC, Gao F, Masek JG, Stenhouse G (2009) Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens Environ 113(9): 1988-1999. doi:10.1016/j.rse.2009.05.011https://doi.org/10.1016/j.rse.2009.05.011
DOI
Holzman ME, Rivas R, Bayala M (2014) Subsurface soil moisture estimation by VI-LST method. IEEE Geosci Remote Sens Lett 11(11): 1951-1955. doi:10.1109/lgrs.2014.2314617https://doi.org/10.1109/LGRS.2014.2314617
DOI
Huang H, Qin W, Liu Q (2013a) RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes. Remote Sens Environ 132: 221-237.doi:10.1016/j.rse.2013.01.013https://doi.org/10.1016/j.rse.2013.01.013
DOI
Huang X, Jiao Z, Dong Y, Zhang H, Li X (2013b) Analysis of BRDF and albedo retrieved by kernel-driven models using field measurements. IEEE J Selected Topics Appl Earth Observ Remote Sens 6(1): 149-161.doi:10.1109/jstars.2012.2208264https://doi.org/10.1109/JSTARS.2012.2208264
DOI

Inglada J, Hagolle O, Dedieu G (2011) A framework for the simulation of high temporal resolution image series. Paper presented at the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 24-29

July 2011Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113(Supplement 1 (0)): S56-S66, http://dx.doi.org/10.1016/j.rse.2008.01.026https://doi.org/10.1016/j.rse.2008.01.026
DOI
Jonsson P, Eklundh L (2004) TIMESAT - a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8): 833-845.doi:10.1016/j.cageo.2004.05.006https://doi.org/10.1016/j.cageo.2004.05.006
DOI

Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu J-C (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4(4):950-974

Kobayashi H, Suzuki R, Kobayashi S (2007) Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer analyses. Remote Sens Environ 106(2): 238-252.doi:10.1016/j.rse.2006.08.011https://doi.org/10.1016/j.rse.2006.08.011
DOI

Li GZ, Wang HX, Zhu JJ (2009) Monthly changes of leaf area index and canopy openness of Larix olgensis in mountainous regions in east Liaoning province. J Northeast Forestry Univ 37(7):13

Liang L, Zhao S-h, Qin Z-h, He K-x, Chen C, Luo Y-x, Zhou X-d (2014) Drought change trend using MODIS TVDI and its relationship with climate factors in china from 2001 to 2010. J Integr Agric 13(7): 1501-1508, http://dx.doi.org/10.1016/S2095-3119(14)60813-3https://doi.org/10.1016/S2095-3119(14)60813-3
DOI

Liu ZL, Jin GZ (2013) Estimation of leaf area index of secondary Betula platyphylla forest in Xiaoxing' an Mountains. Acta Ecologica Sinica 33(8):9CAS

Lucas RM, Lee AC, Williams ML (2006) Enhanced simulation of radar backscatter from forests using LiDAR and optical data. IEEE Trans Geosci Remote Sens 44(10): 2736-2754. doi:10.1109/tgrs.2006.881802https://doi.org/10.1109/TGRS.2006.881802
DOI
Lunetta RS, Johnson DM, Lyon JG, Crotwell J (2004) Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens Environ 89(4): 444-454.doi:10.1016/j.rse.2003.10.022https://doi.org/10.1016/j.rse.2003.10.022
DOI
Masek JG, Huang C, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P (2008) North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ 112(6): 2914-2926.doi:10.1016/j.rse.2008.02.010https://doi.org/10.1016/j.rse.2008.02.010
DOI
Montesano P, Cook B, Sun G, Simard M, Nelson R, Ranson K, Zhang Z, Luthcke S (2013) Achieving accuracy requirements for forest biomass mapping: a spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sens Environ 130: 153-170.doi:10.1016/j.rse.2012.11.016https://doi.org/10.1016/j.rse.2012.11.016
DOI

Mu X, Zhang Q, Liu Q, Pang Y, Hu K (2015) A study on typical forest biomass mapping technology of great khingan using airborne laser scanner data. Remote Sens Technol Appl 30(2):220-225

Muller E, Décamps H (2001) Modeling soil moisture-reflectance. Remote Sens Environ 76(2): 173-180, http://dx.doi.org/10.1016/S0034-4257(00)00198-Xhttps://doi.org/10.1016/S0034-4257(00)00198-X
DOI
Nitze I, Barrett B, Cawkwell F (2015) Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int J Appl Earth Observ Geoinformation 34: 136-146.doi:10.1016/j.jag.2014.08.001https://doi.org/10.1016/j.jag.2014.08.001
DOI
Pisek J, Chen JM (2009) Mapping forest background reflectivity over North America with Multi-angle Imaging SpectroRadiometer (MISR) data. Remote Sens Environ 113(11): 2412-2423.doi:10.1016/j.rse.2009.07.003https://doi.org/10.1016/j.rse.2009.07.003
DOI
Pisek J, Chen JM, Miller JR, Freemantle JR, Peltoniemi JI, Simic A (2010) Mapping forest background reflectance in a boreal region using multiangle compact airborne spectrographic imager data. IEEE Trans Geosci Remote Sens 48(1): 499-510.doi:10.1109/tgrs.2009.2024756https://doi.org/10.1109/TGRS.2009.2024756
DOI
Pisek J, Rautiainen M, Heiskanen J, Mottus M (2012) Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MOD'S BRDF data. Remote Sens Environ 117: 464-468.doi:10.1016/j.rse.2011.09.012https://doi.org/10.1016/j.rse.2011.09.012
DOI

Popescu SC, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Eng Remote Sens 70(5):589-604

Rautiainen M, Lang M, Mõttus M, Kuusk A, Nilson T, Kuusk J, Lükk T (2008) Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens Environ 112(5): 2627-2642, http://dx.doi.org/10.1016/j.rse.2007.12.005https://doi.org/10.1016/j.rse.2007.12.005
DOI
Rautiainen M, Mottus M, Heiskanen J, Akujarvi A, Majasalmi T, Stenberg P (2011) Seasonal reflectance dynamics of common understory types in a northern European boreal forest. Remote Sens Environ 115(12): 3020-3028.doi:10.1016/j.rse.2011.06.005https://doi.org/10.1016/j.rse.2011.06.005
DOI
Rulinda CM, Bijker W, Stein A (2011) The chlorophyll variability in Meteosat derived NDVI in a context of drought monitoring. Procedia Environ Sci 3(0): 32-37, http://dx.doi.org/10.1016/j.proenv.2011.02.007https://doi.org/10.1016/j.proenv.2011.02.007
DOI
Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2-3): 213-224, http://dx.doi.org/10.1016/S0034-4257(01)00274-7https://doi.org/10.1016/S0034-4257(01)00274-7
DOI
Schaaf CB, Strahlerl AH (1994) Validation of bidirectional and hemispherical reflectances from a geometric-optical model using ASAS imagery and pyranometer measurements of a spruce forest. Remote Sens Environ 49(2): 138-144, http://dx.doi.org/10.1016/0034-4257(94)90050-7https://doi.org/10.1016/0034-4257(94)90050-7
DOI
Sharma RC, Kajiwara K, Honda Y (2013) Estimation of forest canopy structural parameters using kernel-driven bi-directional reflectance model based multi-angular vegetation indices. ISPRS J Photogrammetry Remote Sens 78: 50-57.doi:10.1016/j.isprsjprs.2012.12.006https://doi.org/10.1016/j.isprsjprs.2012.12.006
DOI
Tao X, Yan B, Wang K, Wu D, Fan W, Xu X, Liang S (2009) Scale transformation of Leaf Area Index product retrieved from multiresolution remotely sensed data: analysis and case studies. Int J Remote Sens 30(20): 5383-5395.doi:10.1080/01431160903130978https://doi.org/10.1080/01431160903130978
DOI
Tuanmu M-N, Vina A, Bearer S, Xu W, Ouyang Z, Zhang H, Liu J (2010) Mapping understory vegetation using phenological characteristics derived from remotely sensed data. Remote Sens Environ 114(8): 1833-1844.doi:10.1016/j.rse.2010.03.008https://doi.org/10.1016/j.rse.2010.03.008
DOI
Wang JD, Zhang LX, Liu QH, Zhang B, Yin Q (2008) The spectrum knowledge database of typical land surface objects in China. Science Press, Beijing
Wanner W, Li X, Strahler AH (1995) On the derivation of kernels for kernel-driven models of bidirectional reflectance. J Geophys Res 100(D10): 21077-21089.doi:10.1029/95JD02371https://doi.org/10.1029/95JD02371
DOI
Weidong L, Baret F, Xingfa G, Qingxi T, Lanfen Z, Bing Z (2002) Relating soil surface moisture to reflectance. Remote Sens Environ 81(2-3): 238-246, http://dx.doi.org/10.1016/S0034-4257(01)00347-9https://doi.org/10.1016/S0034-4257(01)00347-9
DOI
Whiting ML, Li L, Ustin SL (2004) Predicting water content using Gaussian model on soil spectra. Remote Sens Environ 89(4): 535-552, [http://dx.doi.org/10.1016/j.rse.2003.11.009https://doi.org/10.1016/j.rse.2003.11.009
DOI
Wu C, Niu Z, Tang Q, Huang W (2008) Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr Forest Meteorol 148(8-9): 1230-1241, [http://dx.doi.org/10.1016/j.agrformet.2008.03.005https://doi.org/10.1016/j.agrformet.2008.03.005
DOI

Wu M-Q, Wang J, Niu Z, Zhao Y-Q, Wang C-Y (2012) A model for spatial and temporal data fusion. J Infrared Millimeter Waves 31(1):80-84

Xiao C-W, Janssens IA, Curiel Yuste J, Ceulemans R (2006) Variation of specific leaf area and upscaling to leaf area index in mature Scots pine. Trees 20(3): 304-310.doi:10.1007/s00468-005-0039-xhttps://doi.org/10.1007/s00468-005-0039-x
DOI

Xu G-c, Pang Y, Li Z-y, Zhao K-r, Liu L-x (2013) The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling. Spectrosc Spectral Anal 33(12):3303-3307

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 February 2015
Accepted: 18 June 2015
Published: 26 June 2015
Issue date: September 2015

Copyright

© 2015 Huang and Lian.

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the Chinese National Basic Research Program (2013CB733401) and the Chinese Natural Science Foundation Project (41171278).

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Return