Journal Home > Volume 2 , Issue 1
Background

Successional paludification, a dynamic process that leads to the formation of peatlands, is influenced by climatic factors and site features such as surficial deposits and soil texture. In boreal regions, projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development. The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.

Methods

A paludification index was built using static (e.g. surficial deposits and soil texture) and dynamic (e.g. moisture regime and soil organic layer thickness) stand scale factors available from forest maps. The index considered the effects of three temperature increase scenarios (i.e. +1℃, +3℃ and +6℃) and progressively decreasing fire cycle (from 300 years for 2011–2041, to 200 years for 2071–2100) on peat accumulation rate and soil organic layer (SOL) thickness at the stand level, and paludification at the landscape level.

Results

Our index show that in the context where in the absence of fire the landscape continues to paludify, the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level, and no change in the paludification level of the study area between 2011 and 2100. However, including decreasing fire cycle to the index resulted in declines in paludified area. Overall, the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100, with slower rates of paludification.

Conclusion

Slower paludification rates imply greater forest productivity and a greater potential for forest harvest, but also a gradual loss of open paludified stands, which could impact the carbon balance in paludified landscapes. Nonetheless, as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns, a significant proportion of the territory has high potential to remain a carbon sink.


menu
Abstract
Full text
Outline
About this article

Forecasting the development of boreal paludified forests in response to climate change: a case study using Ontario ecosite classification

Show Author's information Benoit Lafleur1,2( )Nicole J Fenton1Yves Bergeron1
Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X5E4, Canada
Centre d'étude de la forêt, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada

Abstract

Background

Successional paludification, a dynamic process that leads to the formation of peatlands, is influenced by climatic factors and site features such as surficial deposits and soil texture. In boreal regions, projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development. The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.

Methods

A paludification index was built using static (e.g. surficial deposits and soil texture) and dynamic (e.g. moisture regime and soil organic layer thickness) stand scale factors available from forest maps. The index considered the effects of three temperature increase scenarios (i.e. +1℃, +3℃ and +6℃) and progressively decreasing fire cycle (from 300 years for 2011–2041, to 200 years for 2071–2100) on peat accumulation rate and soil organic layer (SOL) thickness at the stand level, and paludification at the landscape level.

Results

Our index show that in the context where in the absence of fire the landscape continues to paludify, the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level, and no change in the paludification level of the study area between 2011 and 2100. However, including decreasing fire cycle to the index resulted in declines in paludified area. Overall, the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100, with slower rates of paludification.

Conclusion

Slower paludification rates imply greater forest productivity and a greater potential for forest harvest, but also a gradual loss of open paludified stands, which could impact the carbon balance in paludified landscapes. Nonetheless, as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns, a significant proportion of the territory has high potential to remain a carbon sink.

Keywords: Canada, Boreal forest, Carbon sequestration, Paludification, Peat forests, Forest harvest

References(44)

Bergeron Y, Gauthier S, Flannigan M, Kafka V (2004) Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 85:1916–1932

Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildl Fire 19:1127–1139

Bhatti JS, Van Kooten GC, Apps MJ, Laird LD, Campbell ID, Campbell C, Turetsky MR, Yu Z, Banfield E (2003) Forest management planning based on natural disturbance and forest dynamics. In: Burton PJ, Messier C, Smith DW, Adamowicz WL (eds) Towards sustainable management of the boreal forest. NRC Research Press, Ottawa, pp 799–855

Busby JR, Whitfield DWA (1978) Water potential, water content, and net assimilation of some boreal forest mosses. Can J Bot 56:1551–1558

de Groot WJ, Pritchard JM, Lynham TJ (2009) Forest floor fuel consumption and carbon emissions in Canadian boreal forest fires. Can J For Res 39:367–382

Drobyshev I, Simard M, Bergeron Y, Hofgaard A (2010) Does soil organic layer thickness affect climate-growth relationships in the black spruce boreal ecosystem? Ecosystems 13: 556–574https://doi.org/10.1007/s10021-010-9340-7
DOI

Dyrness CT, Norum RA (1983) The effects of experimental fires on black spruce forest floors in interior Alaska. Can J For Res 13:879–893

Environment Canada (2014) Canadian climate normals 1981–2010. http://www.climate.weather.gc.ca/climate_normals/index_e.html. Accessed 20 Oct 2014
Flannigan M, Logan KA, Amiro B, Skinner W, Stocks BJ (2005) Future area burned in Canada. Clim Change 72: 1–16https://doi.org/10.1007/s10584-005-5935-y
DOI

Girardin MP, Mudelsee M (2008) Past and future changes in Canadian boreal wildfire activity. Ecol Appl 18:391–406

Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

Greene DF, Macdonald SE, Cumming S, Swift L (2005) Seedbed variation from the interior through the edge of a large wildfire in Alberta. Can J For Res 35:1640–1647

Hilbert DW, Roulet N, Moore T (2000) Modelling and analysis of peatlands as dynamical systems. J Ecol 88:230–242

IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Bashung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

Ise T, Dunn AL, Wofsy SC, Moorcroft PR (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–766

Jeglum JK (1991) Definition of trophic classes in wooded peatlands by means of vegetation types and plant indicators. Ann Bot Fenn 28:175–192

Lafleur B, Fenton NJ, Paré D, Simard M, Bergeron Y (2010a) Contrasting effects of season and method of harvest on soil properties and the growth of black spruce regeneration in the boreal forested peatlands of eastern Canada. Silva Fenn 45:799–813

Lafleur B, Paré D, Fenton NJ, Bergeron Y (2010b) Do harvest and soil type impact the regeneration and growth of black spruce stands in northwestern Quebec? Can J For Res 40: 1843–1851https://doi.org/10.1139/X10-128
DOI

Lavoie M, Paré D, Bergeron Y (2005) Impact of global change and forest management on carbon sequestration on northern forested peatlands. Environ Rev 13:199–240

Lecomte N, Simard M, Bergeron Y, Larouche A, Asnong H, Richard PJH (2005) Effects of fire severity and initial tree composition on understorey vegetation dynamics in a boreal landscape inferred from chronosequence and paleoecological data. J Veg Sci 16:665–674

Lecomte N, Simard M, Fenton N, Bergeron Y (2006) Fire severity and long-term ecosystem biomass dynamics in coniferous boral forests of eastern Canada. Ecosystems 9:1215–1230

Magnan G, Lavoie M, Payette S (2012) Impact of long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quat Res 77:110–121

Magnan G, Garneau M, Payette S (2014) Holocene development of maritime ombrotrophic peatlands of the St. Lawrence North Shore in eastern Canada. Quat Res 82:96–106

McKenney DW, Pedlar JH, Lawrence K, Gray PA, Colombo SJ, Crins WJ (2010) Current and projected future climatic conditions for ecoregions and selected natural heritage areas in Ontario, Climate Change Res. Rep. CCRR-016. Ontario Forest Research Institute, Ministry of Natural Resources, Sault Ste. Marie, ON, Canada
Payette S (2001) Les principaux types de tourbières. In: Payette S, Rochefort L (eds) Écologie des tourbières du Québec-Labrador. Les Presses de l'Université Laval, Québec, Québec, pp 39–89

Payette S, Garneau M, Delwaide A, Schaffhauser A (2013) Forest soil paludification and mid-Holocene retreat of jack pine in easternmost North America: Evidence for a climatic shift from fire-prone to peat-prone conditions. The Holocene 23:494–503

Riley JL (1994) Peat and peatland resources of northeastern Ontario. Ministry of Northern Development and Mines, Ontario Geological Survey. Misc. Paper No, 153

Silvola J (1991) Moisture dependence of CO2 exchange and its recovery after drying in certain boreal forest and peat mosses. Lindergia 17:5–10

Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ (1996) CO2-fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228

Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D (2007) Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–1637

Simard M, Bernier PY, Bergeron Y, Paré D, Guérine L (2009) Paludification dynamics in the boreal forest of the James Bay Lowlands: effect of time since fire and topography. Can J For Res 39:546–552

Sims RA, Baldwin KA (1996) Forest humus forms in northwestern Ontario. Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Technical Report TR-28
Sims RA, Towill WD, Baldwin KA, Wickware GM (1989) Field guide to the forest ecosystem classification for northwestern Ontario, Forest Canada and Ontario Ministry of Natural Resources., p 191
Soil Classification Working Group (1998) The canadian system of soil classification, 3rd edn. Agriculture and Agri-Food Canada Publication 1646, Canada

Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS III, Stackhouse PW (2007) Climateinduced boreal forest change: Predictions versus current observations. Global Planet Change 56:274–296

Taylor KC, Arnup RW, Merchant BG, Parton WJ, Nieppola J (2000) A field guide to forest ecosystems of Northeastern Ontario, 2nd edn. Queen's Printer for Ontario, Canada

Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y (2013) Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35

Terrier A, de Groot WJ, Girardin MP, Bergeron Y (2014a) Dynamics of moisture content in spruce-feather moss and spruce-Sphagnum organic layers during an extreme fire season and implications for future depths of burn in Clay Belt black spruce forests. Int J Wildl Fire 23:490–502

Terrier A, Girardin MP, Cantin A, de Groot WJ, Anyomi KA, Gauthier S, Bergeron Y (2014b) Disturbance legacies and paludification mediate the ecological impact of an intensifying wildfire regime in the Clay Belt boreal forest of eastern North America. J Veg Sci doi: 10.1111/jvs.12250.https://doi.org/10.1111/jvs.12250
DOI

van Bellen S, Garneau M, Bergeron Y (2010) Impact of climate change on forest fire severity and and consequences for carbon stocks in boreal forest stands of Quebec, Canada: A synthesis. Fire Ecol 6:16–44

Veillette JJ (1994) Evolution and paleohydrology of glacial lakes Barlow and Ojibway. Quat Sci Rev 13:945–971

Wieder RK, Vitt DH, Benscoter BW (2006) Peatlands and the boreal forest. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, New York, NY, pp 1–8https://doi.org/10.1007/978-3-540-31913-9_1
DOI

Wu J (2012) Response of peatland development and carbon cycling to climate change: a dynamic system modeling approach. Environ Earth Sci 65:141–151

Yu Z, Campbell ID, Vitt DH, Apps MJ (2001) Modelling long-term peatland dynamics. I. Concepts, review, and proposed design. Ecol Model 145:197–210

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 October 2014
Accepted: 20 January 2015
Published: 30 January 2015
Issue date: March 2015

Copyright

© 2015 Lafleur et al.; licensee Springer.

Acknowledgements

Acknowledgements

This study was made possible by funding from the Ontario Ministry of Natural Resource. We thank Rachelle Lalonde for providing forest maps, Mélanie Desrochers for map production, and Aurélie Terrier for helpful discussion on fire modeling.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Return