Journal Home > Volume 12 , Issue 1

Plastic waste and debris have caused substantial environmental pollution globally in the past decades, and they have been accumulated in hundreds of terrestrial and aquatic avian species. Birds are susceptible and vulnerable to external environments; therefore, they could be used to estimate the negative effects of environmental pollution. In this review, we summarize the effects of macroplastics, microplastics, and plastic-derived additives and plastic-absorbed chemicals on birds. First, macroplastics and microplastics accumulate in different tissues of various aquatic and terrestrial birds, suggesting that birds could suffer from the macroplastics and microplastics-associated contaminants in the aquatic and terrestrial environments. Second, the detrimental effects of macroplastics and microplastics, and their derived additives and absorbed chemicals on the individual survival, growth and development, reproductive output, and physiology, are summarized in different birds, as well as the known toxicological mechanisms of plastics in laboratory model mammals. Finally, we identify that human commensal birds, long-life-span birds, and model bird species could be utilized to different research objectives to evaluate plastic pollution burden and toxicological effects of chronic plastic exposure.


menu
Abstract
Full text
Outline
About this article

Birds and plastic pollution: recent advances

Show Author's information Limin WangGhulam NabiLiyun YinYanqin WangShuxin LiZhuang HaoDongming Li( )
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China

Abstract

Plastic waste and debris have caused substantial environmental pollution globally in the past decades, and they have been accumulated in hundreds of terrestrial and aquatic avian species. Birds are susceptible and vulnerable to external environments; therefore, they could be used to estimate the negative effects of environmental pollution. In this review, we summarize the effects of macroplastics, microplastics, and plastic-derived additives and plastic-absorbed chemicals on birds. First, macroplastics and microplastics accumulate in different tissues of various aquatic and terrestrial birds, suggesting that birds could suffer from the macroplastics and microplastics-associated contaminants in the aquatic and terrestrial environments. Second, the detrimental effects of macroplastics and microplastics, and their derived additives and absorbed chemicals on the individual survival, growth and development, reproductive output, and physiology, are summarized in different birds, as well as the known toxicological mechanisms of plastics in laboratory model mammals. Finally, we identify that human commensal birds, long-life-span birds, and model bird species could be utilized to different research objectives to evaluate plastic pollution burden and toxicological effects of chronic plastic exposure.

Keywords: Birds, Microplastics pollution, Plastics pollution, Toxicological effects

References(121)

Amelineau F, Bonnet D, Heitz O, Mortreux V, Harding AMA, Karnovsky N, et al. Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds. Environ Pollut. 2016;219: 1131–9.

Amereh F, Babaei M, Eslami A, Fazelipour S, Rafiee M. The emerging risk of exposure to nano (micro) plastics on endocrine disturbance and reproductive toxicity: from a hypothetical scenario to a global public health challenge. Environ Pollut. 2020;261: 114158.

An R, Wang XF, Yang L, Zhang JJ, Wang NN, Xu FB, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449: 152665.

Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62: 1596–605.

Avio CG, Gorbi S, Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Mar Environ Res. 2015;111: 18–26.

Ballejo F, Plaza P, Speziale KL, Lambertucci AP, Lambertucci SA. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. Sci Total Environ. 2021;755: 142421.

Barbieri E, de Andrade PE, Filippini A, Souza dos Santos I, Borges Garcia CA. Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianópolis, SC, Brazilian coast. Environ Monit Assess. 2010;169: 631–8.

Basto MN, Nicastro KR, Tavares AI, McQuaid CD, Casero M, Azevedo F, et al. Plastic ingestion in aquatic birds in Portugal. Mar Pollut Bull. 2019;138: 19–24.

Bessa F, Barría P, Neto JM, Frias JPGL, Otero V, Sobral P, et al. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull. 2018;128: 575–84.

Bessa F, Ratcliffe N, Otero V, Sobral P, Marques JC, Waluda CM, et al. Microplastics in gentoo penguins from the Antarctic region. Sci Rep. 2019;9: 14191.

Bester AJ, Priddel D, Klomp NI. Diet and foraging behaviour of the Providence petrel Pterodroma solandri. Mar Ornithol. 2010;39: 163–72.

Blais JM, Kimpe LE, McMahon D, Keatley BE, Mallory ML, Douglas MSV, et al. Arctic seabirds transport marine-derived contaminants. Science. 2005;309: 445.

Borisova T. Nervous system injury in response to contact with environmental, engineered and planetary micro- and nano-sized particles. Front Physiol. 2018;9: 728.

Borrelle SB, Rochman CM, Liboiron M, Bond AL, Lusher A, Bradshaw H, et al. Opinion: why we need an international agreement on marine plastic pollution. Proc Natl Acad Sci USA. 2017;114: 9994–7.

Carbery M, O'Connor W, Palanisami T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int. 2018;115: 400–9.

Carey MJ. Intergenerational transfer of plastic debris by short-tailed shearwaters (Ardenna tenuirostris). Emu. 2011;111: 229–34.

Carlin J, Craig C, Little S, Donnelly M, Fox D, Zhai L. Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ Pollut. 2020;264: 114633.

Carral-Murrieta CO, García-Arroyo M, Marín-Gómez OH, Sosa-López JR, MacGregor-Fors I. Noisy environments: untangling the role of anthropogenic noise on bird species richness in a Neotropical city. Avian Res. 2020;11: 32.

Caviedes-Vidal E, McWhorter TJ, Lavin SR, Chediack JG, Tracy CR, Karasov WH. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc Natl Acad Sci USA. 2007;104: 19132–7.

Cedervall T, Hansson LA, Lard M, Frohm B, Linse S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE. 2012;7: e32254.

Chae Y, An YJ. Effects of micro- and nanoplastics in aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull. 2017;124: 624–32.

Chen Q, Allgeier A, Yin D, Hollert H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int. 2019;130: 104938.

Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, et al. Microplastic ingestion by zooplankton. Environ Sci Technol. 2013;47: 6646–55.

Costantini D. Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett. 2008;11: 1238–51.

da Costa Araújo AP, Malafaia G. Microplastic ingestion induces behavioral disorders in mice: a preliminary study on the trophic transfer effects via tadpoles and fish. J Hazard Mater. 2021;401: 123263.

Dawson A, Huston W, Kawaguchi S, King C, Cropp R, Wild S, et al. Bengtson nash, uptake and depuration kinetics influence microplastic bioaccumulation and toxicity in Antarctic Krill (Euphausia superba). Environ Sci Technol. 2018;52: 3195–201.

Derraik JG. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44: 842–52.

Ding B, Zhao Y, Sun Y, Zhang Q, Li M, Nabi G, et al. Coping with extremes: lowered myocardial phosphofructokinase activities and glucose content but increased fatty acids content in highland Eurasian Tree Sparrows. Avian Res. 2021;12: 44.

Du ZH, Xia J, Sun XC, Li XN, Zhang C, Zhao HS, et al. A novel nuclear xenobiotic receptors (AhR/ PXR/CAR)-mediated mechanism of DEHP-induced cerebellar toxicity in quails (Coturnix Japonica) via disrupting CYP enzyme system homeostasis. Environ Pollut. 2017;226: 435–43.

Ducatez S, Lefebvre L. Patterns of research effort in birds. PLoS ONE. 2014;9: e89955.

Estrela FN, Guimarães ATB, Araújo APDC, Silva FG, Luz TMD, Silva AM, et al. Toxicity of polystyrene nanoplastics and zinc oxide to mice. Chemosphere. 2021;271: 129476.

Fisher SA, Bortolotti GR, Fernie KJ, Smits JE, Marchant TA, Drouillard KG, et al. Courtship behavior of captive American kestrels (Falco sparverius) exposed to polychlorinated biphenyls. Arch Environ Cont Toxicol. 2001;41: 215–20.

Fossi MC, Panti C, Baini M, Lavers JL. A review of plastic-associated pressures: cetaceans of the Mediterranean Sea and Eastern Australian shearwaters as case studies. Front Mar Sci. 2018;5: 1–10.

Frederick P, Jayasena N. Altered pairing behaviour and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proc R Soc B Biol Sci. 2011;278: 1851–7.

Gall SC, Thompson RC. The impact of debris on marine life. Mar Pollut Bull. 2015;92: 170–9.

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3: 1700782.

Gregory MR. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc Lond B. 2009;364: 2013–25.

Hammer S, Nager RG, Johnson PCD, Furness RW, Provencher JF. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species. Mar Pollut Bull. 2016;103: 206–10.

Hanson HE, Mathews NS, Hauber ME, Martin LB. The house sparrow in the service of basic and applied biology. eLife. 2020;9: e52803.

Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, et al. Ecotoxicology of persistent organic pollutants in birds. Environ Sci Process Impacts. 2021;23: 400–16.

Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, et al. Occurrence and effects of plastic additives in marine environments and organisms: a review. Chemosphere. 2017;182: 781–93.

Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull. 2011;62: 1683–92.

Hou JY, Lei ZM, Cui LL, Hou Y, Yang L, An R, et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicol Environ Saf. 2021;212: 112012.

Houston DC, Mee A, McGrady M, Warkentin IG. Why do condors and vultures eat junk? the implications for conservation. J Raptor Res. 2007;41: 235–8.

Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015;347: 768–71.

Jamieson AJ, Brooks LSR, Reid WDK, Piertney SB, Narayanaswamy BE, Linley TD. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R Soc Open Sci. 2019;6: 180667.

Jayasena N, Frederick PC, Larkin IL. Endocrine disruption in white ibises (Eudocimus albus) caused by exposure to environmentally relevant levels of methylmercury. Aquat Toxicol. 2011;105: 321–7.

Jin YX, Lu L, Tu WQ, Luo T, Fu ZW. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019;649: 308–17.

Jin HB, Ma T, Sha XX, Liu ZY, Zhou Y, Meng XN, et al. Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater. 2021;401: 123430.

Juárez R, Chacón-Madrigal E, Sandoval L. Urbanization has opposite effects on the territory size of two passerine birds. Avian Res. 2020;11: 11.

Karami A, Romano N, Galloway T, Hamzah H. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). Environ Res. 2016;151: 58–70.

Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Persp. 2006;114: 1697–702.

Kramar DE, Carstensen B, Prisley S, Campbell J. Mercury concentrations in blood and feathers of nestling Bald Eagles in coastal and inland Virginia. Avian Res. 2019;10: 3.

Lavers JL, Bond AL, Hutton I. Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ Pollut. 2014;187: 124–9.

Lavers JL, Sharp PB, Stuckenbrock S, Bond AL. Entrapment in plastic debris endangers hermit crabs. J Hazard Mater. 2020;387: 121703.

Li PC, Li XN, Du ZH, Wang H, Yu ZR, Li JL. Di (2-ethyl hexyl) phthalate (DEHP)-induced kidney injury in quail (Coturnix Japonica) via inhibiting HSF1/HSF3-dependent heat shock response. Chemosphere. 2018;209: 981–8.

Li M, Zhu WW, Wang Y, Sun YF, Li JY, Liu XL, et al. Effects of capture and captivity on plasma corticosterone and metabolite levels in breeding Eurasian Tree Sparrows. Avian Res. 2019;10: 16.

Li L, Ge JR, Zheng SY, Hong LH, Zhang XN, Li M, et al. Thermogenic responses in Eurasian Tree Sparrow (Passer montanus) to seasonal acclimatization and temperature-photoperiod acclimation. Avian Res. 2020;11: 35.

Li M, Nabi G, Sun YF, Wang Y, Wang LM, Jiang C, et al. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. Ecotoxicol Environ Saf. 2021;208: 111755.

Lindborg VA, Ledbetter JF, Walat JM, Moffett C. Plastic consumption and diet of glaucous-winged gulls (Larus glaucescens). Mar Pollut Bull. 2012;64: 2351–6.

Lu L, Wan ZQ, Luo T, Fu ZW, Jin YX. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018;631–632: 449–58.

MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373: 61–5.

Marín-Gómez OH, García-Arroyo M, Sánchez-Sarria CE, Sosa-López JR, Santiago-Alarcon D, MacGregor-Fors I. Nightlife in the city: drivers of the occurrence and vocal activity of a tropical owl. Avian Res. 2020;11: 9.

Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, Cedervall T. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ Sci Technol. 2015;49: 553–61.

Mattsson K, Adolfsson K, Ekvall MT, Borgström MT, Linse S, Hansson LA, et al. Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna. Nanotoxicology. 2016;10: 1160–7.

Mattsson K, Johnson EU, Malmendal A, Linse S, Hansson LA, Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep. 2017;7: 11452.

McCarty JP, Second AL. Possible effects of PCB contamination on female plumage color and reproductive success in Hudson River Tree Swallows. Auk. 2000;117: 987–95.

McNab BK. Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol A Mol Integr Physiol. 2009;152: 22–45.

Moore CJ. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res. 2008;108: 131–9.

Munshi-South J, Wilkinson GS. Bats and birds: exceptional longevity despite high metabolic rates. Ageing Res Rev. 2010;9: 12–9.

Nabi G, Ali M, Khan S, Kumar S. The crisis of water shortage and pollution in Pakistan: risk to public health, biodiversity, and ecosystem. Environ Sci Pollut Res. 2019;26: 10443–5.

Nabi G, Wang Y, Lü L, Jiang C, Ahmad S, Wu YF, et al. Bats and birds as viral reservoirs: a physiological and ecological perspective. Sci Total Environ. 2021;754: 142372.

Napper IE, Davies BFR, Clifford H, Elvin S, Koldewey HJ, Mayewski PA, et al. Reaching new heights in plastic pollution—preliminary findings of microplastics on mount everest. One Earth. 2020;3: 621–30.

Nelms SE, Barnett J, Brownlow A, Davison NJ, Deaville R, Galloway TS, et al. Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory? Sci Rep. 2019;9: 1075.

O'Shea TJ, Stafford CJ. Phthalate plasticizers: accumulation and effects on weight and food consumption in captive starlings. Bull Environ Contam Toxicol. 1980;25: 345–52.

Orme CDL, Davies RG, Olson VA, Thomas GH, Ding TS, Rasmussen PC, et al. Global patterns of geographic range size in birds. PLoS Biol. 2006;4: e208.

Ottinger MA, Quinn MJ Jr, Lavoie E, Abdelnabi MA, Thompson N, Hazelton JL, et al. Consequences of endocrine disrupting chemicals on reproductive endocrine function in birds: establishing reliable end points of exposure. Domest Anim Endocrinol. 2005;29: 411–9.

Ottinger MA, Lavoie E, Thompson N, Barton A, Whitehouse K, Barton M, et al. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds. Brain Res Rev. 2008;57: 376–85.

Patrício Silva AL, Prata JC, Walker TR, Duarte AC, Ouyang W, Barcelò D, et al. Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem Eng J. 2021;405: 126683.

Pierce KE, Harris RJ, Larned LS, Pokras MA. Obstruction and starvation associated with plastic ingestion in a northern gannet morus bassanus and a greater shearwater Puffinus Gravis. Mar Ornithol. 2004;32: 187–9.

Plaza PI, Blanco G, Madariaga J, Boeri E, Teijeiro ML, Bianco G, et al. Scavenger birds exploiting rubbish dumps: pathogens at the gates. Transbound Emerg Dis. 2018;2019(66): 873–81.

Provencher JF, Bond AL, Avery Gomm S, Borrelle SB, Bravo Rebolledo EL, Hammer S, et al. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. Anal Methods. 2017;9: 1454–69.

Prüst M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol. 2020;17: 24.

Puskic P, Lavers JL, Adams LA, Grünenwald M, Hutton I, Bond AL. Uncovering the sub-lethal effects of plastic ingestion by shearwaters using fatty acid analysis. Conserv Physiol. 2019;7: coz017.

Rapp DC, Youngren SM, Hartzell P, David HK. Community-wide patterns of plastic ingestion in seabirds breeding at French frigate shoals, northwestern Hawaiian islands. Mar Pollut Bull. 2017;123: 269–78.

Rathi A, Basu S, Barman S. Adsorptive removal of fipronil from its aqueous solution by modified zeolite HZSM-5: equilibrium, kinetic and thermodynamic study. J Mol Liq. 2019;283: 867–78.

Reddy AVB, Moniruzzaman M, Aminabhavi TM. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem Eng J. 2019;358: 1186–207.

Revel M, Châtel A, Mouneyrac C. Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health. 2018;1: 17–23.

Reynolds C, Ryan PG. Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar Pollut Bull. 2018;126: 330–3.

Ribeira F, Garcia AR, Pereira BP, Fonseca M, Mestre NC, Fonseca TG, et al. Microplastics effects on Scrobicularia plano. Mar Pollut Bull. 2017;122: 379–91.

Rideout BA, Stalis I, Papendick R, Pessier A, Puschner B, Finkelstein ME, et al. Patterns of mortality in free-ranging California Condors (Gymnogyps californianus). J Wildl Dis. 2012;48: 95–112.

Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, et al. Policy: classify plastic waste as hazardous. Nature. 2013;494: 169–71.

Rochman CM, Kurobe T, Flores I, Teh SJ. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ. 2014;493: 656–61.

Rodríguez A, Rodríguez B, Carrasco MN. High prevalence of parental delivery of plastic debris in Cory's shearwaters (Calonectris diomedea). Mar Pollut Bull. 2012;64: 2219–23.

Roman L, Lowenstine L, Parsley LM, Wilcox C, Hardesty BD, Gilardi K, et al. Is plastic ingestion in birds as toxic as we think? Insights from a plastic feeding experiment. Sci Total Environ. 2019;665: 660–7.

Ryan PG. Entanglement of birds in plastics and other synthetic materials. Mar Pollut Bull. 2018;135: 159–64.

Sánchez R, Sánchez J, Oria J, Guil F. Do supplemental perches influence electrocution risk for diurnal raptors? Avian Res. 2020;11: 20.

Sanderson JT, Elliott JE, Norstrom RJ, Whitehead PE, Hart LE, Cheng KM, et al. Monitoring biological effects of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in Great Blu Heron Chicks (Ardea herodias) in British Columbia. J Toxicol Environ Health. 1994;41: 435–50.

Sletten S, Bourgeon S, Badsen BJ, Herzke D, Criscuolo F, Massemin S, et al. Organohalogenated contaminants nestlings: An assessment of relationships to immunoglobulin levels, telomeres and oxidative stress. Sci Total Environ. 2016;539: 337–49.

Sun YF, Ren Z, Wu YF, Lei FM, Dudley R, Li DM. Flying high: limits to flight performance by sparrows on the Qinghai-Tibet Plateau. J Exp Biol. 2016;219: 3642–8.

Susanti NK, Mardiastuti A, Wardiatno Y. Microplastics and the impact of plastic on wildlife: a literature review. Environ Earth Sci. 2020;528: 012013.

Tanaka K, Takada H, Yamashita R, Mizukawa K, Fukuwaka M, Watanuki Y. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar Pollut Bull. 2013;69: 219–22.

Tanaka K, Watanuki Y, Takada H, Ishizuka M, Yamashita R, Kazama M, et al. In vivo accumulation of plastic-derived chemicals into seabird tissues. Curr Biol. 2020;30: 723–8.

Tauler-Ametlller H, Pretus JL, Hernández-Matías A, Ortiz-Santaliestra ME, Mateo R, Real J. Domestic waste disposal sites secure food availability but diminish plasma antioxidants in Egyptian vulture. Sci Total Environ. 2019;650: 1382–91.

Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B. 2009;364: 2027–45.

Verlis KM, Campbell ML, Wilson SP. Ingestion of marine debris plastic by the wedge-tailed shearwater Ardenna pacifica in the Great Barrier Reef, Australia. Mar Pollut Bull. 2013;72: 244–9.

von Moos N, Burkhardt-Holm P, Kohler A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol. 2012;46: 11327–35.

Waring RH, Harris RM, Mitchell SC. Plastic contamination of the food chain: a threat to human health? Maturitas. 2018;115: 64–8.

Wilcox C, Van Sebille E, Hardesty BD. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc Natl Acad Sci USA. 2015;112: 11899–904.

Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013;178: 483–92.

Yamashita R, Takada H, Fukuwaka MA, Watanuki Y. Physical and chemical effects of ingested plastic debris on short-tailed shearwaters, Puffinus tenuirostris, in the North Pacific Ocean. Mar Pollut Bull. 2011;62: 2845–9.

Yang Y, Zhang YM, Ding J, Ai SW, Guo R, Bai XJ. Optimal analysis conditions for sperm motility parameters with a CASA system in a passerine bird Passer montanus. Avian Res. 2019;10: 35.

Yang Y, Zhang W, Wang S, Zhang H, Zhang Y. Response of male reproductive function to environmental heavy metal pollution in a free-living passerine bird, Passer montanus. Sci Total Environ. 2020;747: 141402.

Yin L, Chen B, Xia B, Shi X, Qu K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater. 2018;360: 97–105.

Yin L, Liu H, Cui H, Chen B, Li L, Wu F. Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). J Hazard Mater. 2019;380: 120861.

Young LC, Vanderlip C, Duffy DC, Afanasyev V, Shaffer SA. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses? PLoS ONE. 2009;4: e7623.

Yu LH, Luo XJ, Liu HY, Zeng YH, Zheng XB, Wu JP, et al. Organohalogen contamination in passerine birds from three metropolises in China: geographical variation and its implication for anthropogenic effects on urban environments. Environ Pollut. 2014;188: 118–23.

Zhang YZ, Zuo YZ, Du ZH, Xia J, Zhang C, Wang H, et al. Di (2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quails (Coturnix Japonica) via triggering nuclear xenobiotic receptors and modulating cytochrome P450 systems. Food Chem Toxicol. 2018;120: 287–93.

Zhao S, Zhu L, Li D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: not only plastics but also natural fibers. Sci Total Environ. 2016;550: 1110–5.

Zhu D, Bi QF, Xiang Q, Chen QL, Christie P, Ke X, et al. Trophic predator-prey relationships promote transport of microplastics compared with the singleHypoaspis aculeifer and Folsomia candida. Environ Pollut. 2018;235: 150–4.

Zhu YG, Zhu D, Xu T, Ma J. Impacts of (micro) plastics on soil ecosystem: progress and perspective. J Agro-Environ Sci. 2019;38: 1–6.

Publication history
Copyright
Rights and permissions

Publication history

Received: 19 July 2021
Accepted: 22 October 2021
Published: 02 November 2021
Issue date: January 2021

Copyright

© The Author(s) 2021.

Rights and permissions

Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return