Journal Home > Volume 12 , Issue 1
Background

Efficient and selective utilization of metabolic substrates is one of the key strategies in high-altitude animals to cope with hypoxia and hypothermia. Previous findings have shown that the energy substrate utilization of highland animals varies with evolutionary history and phylogeny. The heart is a proxy for the cardiopulmonary system, and the metabolic substrate utilization in the myocardium is also under the strong selective pressure of chronically hypoxic and hypothermic environments. However, little information is available on the physiological adjustments in relation to metabolic substrate utilization in the myocardium for coping with high-altitude environments.

Methods

We compared the metabolic enzyme activities, including hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), carnitine palmitoyl transferase 1 (CPT-1), lactic dehydrogenase (LDH), and creatine kinase (CK), and metabolic substrate contents including glucose (Glu), triglyceride (TG), and free fatty acid (FFA) in the myocardium of a typical human commensal species, Eurasian Tree Sparrows (Passer montanus) between the Qinghai-Tibet Plateau (the QTP, 3230 m) and low altitude population (Shijiazhuang, 80 m), and between sexes.

Results

Among the seven metabolic enzymes and three substrates investigated, we identified no significant differences in PK, CPT-1, HK, CS, LDH, and CK activities and TG content of the myocardium between high and low altitude populations. However, the QTP sparrows had significantly lower Glu content and PFK activities but higher FFA content relative to their lowland counterparts. In addition, male sparrows had higher myocardial HK and CS activities relative to females, independent of altitude.

Conclusions

Our results showed that the QTP sparrows elevated fatty acid utilization rather than glucose preference in the myocardium relative to lowland counterpart, which contributes to uncovering both the physiological adjustments for adapting to the extreme conditions of the QTP, intraspecifically.


menu
Abstract
Full text
Outline
About this article

Coping with extremes: lowered myocardial phosphofructokinase activities and glucose content but increased fatty acids content in highland Eurasian Tree Sparrows

Show Author's information Boyang Ding1Yuliang Zhao1Yanfeng Sun1,2Qian Zhang1Mo Li1,3Ghulam Nabi1Yuefeng Wu1Chuan Jiang1( )Dongming Li1( )
Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050010, China
Ocean College, Hebei Agricultural University, 066003, Qinhuangdao, China
College of Life Science, Cangzhou Normal University, 061001, Cangzhou, China

Abstract

Background

Efficient and selective utilization of metabolic substrates is one of the key strategies in high-altitude animals to cope with hypoxia and hypothermia. Previous findings have shown that the energy substrate utilization of highland animals varies with evolutionary history and phylogeny. The heart is a proxy for the cardiopulmonary system, and the metabolic substrate utilization in the myocardium is also under the strong selective pressure of chronically hypoxic and hypothermic environments. However, little information is available on the physiological adjustments in relation to metabolic substrate utilization in the myocardium for coping with high-altitude environments.

Methods

We compared the metabolic enzyme activities, including hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), carnitine palmitoyl transferase 1 (CPT-1), lactic dehydrogenase (LDH), and creatine kinase (CK), and metabolic substrate contents including glucose (Glu), triglyceride (TG), and free fatty acid (FFA) in the myocardium of a typical human commensal species, Eurasian Tree Sparrows (Passer montanus) between the Qinghai-Tibet Plateau (the QTP, 3230 m) and low altitude population (Shijiazhuang, 80 m), and between sexes.

Results

Among the seven metabolic enzymes and three substrates investigated, we identified no significant differences in PK, CPT-1, HK, CS, LDH, and CK activities and TG content of the myocardium between high and low altitude populations. However, the QTP sparrows had significantly lower Glu content and PFK activities but higher FFA content relative to their lowland counterparts. In addition, male sparrows had higher myocardial HK and CS activities relative to females, independent of altitude.

Conclusions

Our results showed that the QTP sparrows elevated fatty acid utilization rather than glucose preference in the myocardium relative to lowland counterpart, which contributes to uncovering both the physiological adjustments for adapting to the extreme conditions of the QTP, intraspecifically.

Keywords: Energy utilization, Eurasian Tree Sparrow, Metabolic enzyme, Myocardium, The Qinghai-Tibet Plateau

References(75)

Azevedo JL Jr, Carey JO, Pories WJ, Morris PG, Dohm GL. Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes. 1995;44: 695–8.

Bagger JP, Thomassen A, Nielsen TT. Cardiac energy metabolism in patients with chest pain and normal coronary angiograms. Am J Cardiol. 2000;85: 315–20.

Belitz HD, Grosch W, Schieberle P. Food chemistry. 4th ed. Berlin: Springer; 2009.

Blanchard DC, Spencer RL, Weiss SM, Blanchard RJ, McEwen B, Sakai RR. Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinology. 1995;20: 117–34.

Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, et al. Increased dependence on blood glucose after acclimatization to 4, 300 m. J Appl Physiol. 1991;70: 919–27.

Brooks GA, Wolfel EE, Groves BM, Bender PR, Butterfield GE, Cymerman A, et al. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4, 300 m. J Appl Physiol. 1992;72: 2435–45.

Burggren WW, Cameron JN. Anaerobic metabolism, gas exchange, and acid–base balance during hypoxic exposure in the channel catfish Ictalurus punctatus. J Exp Zool. 1980;213: 405–16.

Burggren WW, Farrell AP, Lillywhite HB. Vertebrate cardiovascular systems. In: Terjung R, editor. Comprehensive physiology, Suppl. 30. Handbook of physiology, comparative physiology. Hoboken, NJ: Wiley-Blackwell; 2011.

Calder WA. Respiratory and heart rates of birds at rest. Condor. 1968;70: 358–65.

Camici PG, Marraccini P, Lorenzoni R, Buzzigoli G, Pecori N, Perissinotto A, et al. Coronary hemodynamics and myocardial metabolism in patients with syndrome X: response to pacing stress. J Am Coll Cardiol. 1991;17: 1461–70.

Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol. 1991;70: 1593–600.

Casiday R, Frey R. Blood, sweat, and buffers: pH regulation during exercise, acid–base equilibria experiment. St. Louis: Washington University; 2012.

Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc Natl Acad Sci USA. 2012;109: 8635–40.

Cheviron ZA, Natarajan C, Projecto-Garcia J, Eddy DK, Jones J, Carling MD, et al. Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean sparrow, Zonotrichia capensis. Mol Biol Evol. 2014;31: 2948–62.

Durmowicz AG, Hofmeister S, Kadyraliev TK, Aldashev AA, Stenmark KR. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J Appl Physiol. 1993;74: 2276–85.

Faraci FM, Kilgore DL Jr, Fedde MR. Attenuated pulmonary pressor response to hypoxia in bar-headed geese. Am J Physiol. 1984;247: R402–3.

Fuxe K, Cintra A, Andbjer B, Anggård E, Goldstein M, Agnati LF. Centrally administered endothelin-1 produces lesions in the brain of the male rat. Acta Physiol Scand. 1989;137: 155–6.

Ge RL, Kubo K, Kobayashi T, Sekiguchi M, Honda T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol. 1998;274: H1792–9.

Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, et al. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab. 2012;106: 244–7.

Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest. 1988;82: 2017–25.

Green HJ, Sutton JR, Cymerman A, Young PM, Houston CS. Operation Everest Ⅱ: adaptations in human skeletal muscle. J Appl Physiol. 1989;66: 2454–61.

Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3, 658 m. J Appl Physiol. 1985;1993(74): 312–8.

Grubb BR. Allometric relations of cardiovascular function in birds. Am J Physiol. 1983;245: H567–72.

Hao Y, Xiong Y, Cheng Y, Song G, Jia C, Qu Y, et al. Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc Natl Acad Sci USA. 2019;116: 11851–6.

Hayward CS, Webb CM, Collins P. Effect of sex hormones on cardiac mass. Lancet. 2001;357: 1354–6.

Hebisz R, Hebisz P, Borkowski J, Zatoń M. Differences in physiological responses to interval training in cyclists with and without interval training experience. J Hum Kinet. 2016;50: 93–101.

Hochachka PW, Somero GN. Biochemical adaptation. Mechanism and process in physiological evolution. New York: Oxford University Press; 2002.

Holden JE, Stone CK, Clark CM, Brown WD, Nickles RJ, Stanley C, et al. Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol. 1995;79: 222–8.

Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZH, et al. Metabolic basis to Sherpa altitude adaptation. Proc Natl Acad Sci USA. 2017;114: 6382–7.

Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, et al. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985;313: 1050–4.

Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Phys A. 2015;186: 66–74.

Jing XP, Wang WJ, Degen AA, Guo YM, Kang JP, Liu PP, et al. Energy substrate metabolism in skeletal muscle and liver when consuming diets of different energy levels: comparison between Tibetan and Small-tailed Han sheep. Animal. 2021;15: 100162.

Kaur H, Parikh V, Sharma A, Singh M. Effect of amiloride a Na+/H+ exchange inhibitor on cardioprotective effect of ischaemic preconditioning: possible involvement of resident cardiac mast cells. Pharmacol Res. 1997;36: 95–102.

Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Phys A. 2007;146: 26–39.

Kolar F, Ostadal B. Sex differences in cardiovascular function. Acta Physiol. 2013;207: 584–7.

Koolhaas JM, Meerlo P, de Boer SF, Strubbe JH, Bohus B. Social stress in rats: an animal model of depression? Acta Neuropsychiatr. 1995;7: 27–9.https://doi.org/10.1017/S0924270800037479
DOI

Lagranha CJ, Deschamps A, Aponte A, Steenbergen C, Murphy E. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res. 2010;106: 1681–91.

Li D, Wu J, Zhang X, Ma X, Wingfield JC, Lei F, et al. Comparison of adrenocortical responses to acute stress in lowland and highland Eurasian Tree Sparrows (Passer montanus): similar patterns during the breeding, but different during the prebasic molt. J Exp Zool A Ecol Genet Physiol. 2011;315: 512–9.

Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90: 207–58.

Martinez M, Calvo-Torrent A, Pico-Alfonso MA. Social defeat and subordination as models of social stress in laboratory rodents: a review. Aggressive Behav. 1998;24: 241–56.

DOI

Milerová M, Drahota Z, Chytilová A, Tauchmannová K, Houštěk J, Ošťádal B. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem. 2016;412: 147–54.

Mónus F, Szabó K, Lózsa A, Pénzes Z, Barta Z. Intersexual size and plumage differences in tree sparrows (Passer montanus)—a morphologicals study based on molecular sex determination. Acta Zool Acad Sci H. 2011;57: 269–77.

Murphy E. Estrogen signaling and cardiovascular disease. Circ Res. 2011;109: 687–96.

Neglia D, de Caterina A, Marraccini P, Natali A, Ciardetti M, Vecoli C, et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;293: H3270–8.

Pilarski JQ, Solomon IC, Kilgore DL Jr, Hempleman SC. Effects of aerobic and anaerobic metabolic inhibitors on avian intrapulmonary chemoreceptors. Am J Physiol Regul Integr Comp Physiol. 2009;296: R1576–84.

Pulinilkunnil T, Rodrigues B. Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease. Cardiovasc Res. 2006;69: 329–40.

Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, et al. The yak genome and adaptation to life at high altitude. Nat Genet. 2012;44: 946–9.

Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun. 2013;4: 2071.

Qu Y, Tian S, Han N, Zhao H, Gao B, Fu J, et al. Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in eastern Himalayas. Sci Rep. 2015;5: 14256.

Qu Y, Chen C, Xiong Y, She H, Zhang YE, Cheng Y, et al. Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in Eurasian Tree Sparrows. Natl Sci Rev. 2020;7: 113–27.

Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA. Acclimatization to 4, 300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996a;81: 1762–71.

Roberts AC, Reeves JT, Butterfield GE, Mazzeo RS, Sutton JR, Wolfel EE, et al. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996b;80: 605–15.

Sakai A, Matsumoto T, Saitoh M, Matsuzaki T, Koizumi T, Ishizaki T, et al. Cardiopulmonary hemodynamics of blue-sheep, Pseudois nayaur, as high-altitude adapted mammals. Jpn J Physiol. 2003;53: 377–84.

Samaja M, Mariani C, Prestini A, Cerretelli P. Acid–base balance and O2 transport at high altitude. Acta Physiol Scand. 1997;159: 249–56.

Scott GR, Milsom WK. Control of breathing and adaptation to high altitude in the bar-headed goose. Am J Physiol-Reg. 2007;I(293): R379–91.https://doi.org/10.1152/ajpregu.00161.2007
DOI

Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Milsom WK. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol. 2011;28: 351–63.

Sears MW, Hayes JP, O'Connor CS, Geluso K, Sedinger JS. Individual variation in thermogenic capacity affects above-ground activity of high-altitude Deer Mice. Funct Ecol. 2006;20: 97–104.

Shao Y, Li JX, Ge RL, Zhong L, Irwin DM, Murphy RW, et al. Genetic adaptations of the plateau zokor in high-elevation burrows. Sci Rep. 2015;5: 17262.

Storz JF, Moriyama H. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol. 2008;9: 148–57.

Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol. 2010;213: 4125–36.

Summers-Smith D. Eurasian tree sparrow (Passer montanus). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Handbook of the birds of the world alive. Barcelona: Lynx Edicions; 2018. p. 217–44.

Sun YF, Ren ZP, Wu YF, Lei FM, Dudley R, Li DM. Flying high: limits to flight performance by sparrows on the Qinghai-Tibet Plateau. J Exp Biol. 2016;219: 3642–8.

Sun YF, Li M, Song G, Lei FM, Li DM, Wu YF. The role of climate factors in geographic variation in body mass and wing length in a passerine bird. Avian Res. 2017;8: 1.

Sutton JR, Jones NL, Griffith L, Pugh CE. Exercise at altitude. Annu Rev Physiol. 1983;45: 427–37.

Tate KB, Ivy CM, Velotta JP, Storz JF, McClelland GB, Cheviron ZA, et al. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. J Exp Biol. 2017;220: 3616–20.

Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin P-N. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science. 2000;289: 1916–9.

Vaillancourt E, Haman F, Weber JM. Fuel selection in Wistar rats exposed to cold: shivering thermogenesis diverts fatty acids from re-esterification to oxidation. J Physiol. 2009;587: 4349–59.

van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992;72: 881–940.

Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555: 1–13.

Vinet A, Mandigout S, Nottin S, Nguyen LD, Lecoq AM, Courteix D, et al. Influence of body composition, hemoglobin concentration, and cardiac size and function of gender differences in maximal oxygen uptake in prepubertal children. Chest. 2003;124: 1494–9.

Wang X, Hole DG, da Costa TH, Evans RD. Alterations in myocardial lipid metabolism during lactation in the rat. Am J Physiol. 1998;275: E265–71.

Weber JM. Metabolic fuels: regulating fluxes to select mix. J Exp Biol. 2011;214: 286–94.

Young AJ, Evans WJ, Cymerman A, Pandolf KB, Knapik JJ, Maher JT. Sparing effect of chronic high-altitude exposure on muscle glycogen utilization. J Appl Physiol. 1982;52: 857–62.

Zhu X, Guan Y, Signore AV, Natarajan C, DuBay SG, Cheng Y, et al. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc Natl Acad Sci USA. 2018;115: 1865–70.

Zinker BA, Namdaran K, Wilson R, Lacy DB, Wasserman DH. Acute adaptation of carbohydrate metabolism to decreased arterial PO2. Am J Physiol. 1994;266: E921–9.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 April 2021
Accepted: 01 September 2021
Published: 09 September 2021
Issue date: January 2021

Copyright

© The Author(s) 2021.

Acknowledgements

Acknowledgements

We thank Zhipeng Ren, Yinchao Hao, Simeng Yu, and Haiqing He for theirassistance with sample collection in the field.

Rights and permissions

Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return