Journal Home > Volume 9 , Issue 1
Background

The most dominant global threat to natural forests and their biodiversity is land-cover change, which has negative impacts on both species persistence and ecosystem functions. Land-cover change could alter animal behaviour and disrupt seed dispersal mutualisms. However, its effects on the role of bird functional traits in seed dispersal are not well studied.

Methods

In the present study, we assessed the contributions of bird functional traits (behavioural traits: food habit, foraging pattern, foraging frequency, and habitat specialisation; morphological traits: weight, body length, wing length, and tail length) to both seed removal patterns and seed dispersal distances of an endangered and native tree species, Chinese yew (Taxus chinensis), in farmland, patchy habitat, and natural habitat, of southeast China.

Results

We found that the ability of T. chinensis trees to form seed dispersal mutualisms with local birds varied across the different disturbed habitats. As a consequence of these mutualisms, more seeds were removed by birds from the patchy habitat than from the other two habitats. The number of seeds removed increased with bird foraging frequency. Moreover, the dispersal distance from the three habitats differed, and the longest dispersal distances were observed at both the patchy habitat and the farmland site. Seed dispersal distance increased with bird tail and wing length.

Conclusions

Our Results highlight the importance of bird functional traits in the seed dispersal patterns of endangered trees across disturbed forest habitats, which should be considered for tree conservation and management.


menu
Abstract
Full text
Outline
About this article

Bird functional traits affect seed dispersal patterns of China's endangered trees across different disturbed habitats

Show Author's information Ning Li1 ( )Zheng Wang2Xinhai Li3Zhaohui Li1
Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing 211171, China
Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environmental Science, Nanjing Forestry University, Nanjing 210037, China
Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Background

The most dominant global threat to natural forests and their biodiversity is land-cover change, which has negative impacts on both species persistence and ecosystem functions. Land-cover change could alter animal behaviour and disrupt seed dispersal mutualisms. However, its effects on the role of bird functional traits in seed dispersal are not well studied.

Methods

In the present study, we assessed the contributions of bird functional traits (behavioural traits: food habit, foraging pattern, foraging frequency, and habitat specialisation; morphological traits: weight, body length, wing length, and tail length) to both seed removal patterns and seed dispersal distances of an endangered and native tree species, Chinese yew (Taxus chinensis), in farmland, patchy habitat, and natural habitat, of southeast China.

Results

We found that the ability of T. chinensis trees to form seed dispersal mutualisms with local birds varied across the different disturbed habitats. As a consequence of these mutualisms, more seeds were removed by birds from the patchy habitat than from the other two habitats. The number of seeds removed increased with bird foraging frequency. Moreover, the dispersal distance from the three habitats differed, and the longest dispersal distances were observed at both the patchy habitat and the farmland site. Seed dispersal distance increased with bird tail and wing length.

Conclusions

Our Results highlight the importance of bird functional traits in the seed dispersal patterns of endangered trees across disturbed forest habitats, which should be considered for tree conservation and management.

Keywords: Seed dispersal, Functional traits, Frugivorous birds, Behavioural traits, Morphological traits

References(34)

Bai B, Li N, Li XH, Lu CH. Bulbuls and crows provide complementary seed dispersal for China's endangered trees. Avian Res. 2017;8:31.

Bregman TP, Lees AC, MacGregor HEA, Darski B, de Moura NG, Aleixo A, Barlow J, Tobias JA. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc R Soc Lond B Biol. 2016;283:20161289.

Breiman L. Random forests. Mach Learn. 2001;45:5–32.

Breitbach N, Laube I, Steffan-Dewenter I, Bohning-Gaese K. Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia. 2010;162:965–76.

Cody ML. Habitats selection in birds. London: Academic Press; 1985.

Cordeiro NJ, Howe HF. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc Natl Acad Sci USA. 2003;100:14052–4.

Fahrig L. Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst. 2003;34:487–515.

Fahrig L. Non-optimal animal movement in human-altered landscapes. Funct Ecol. 2007;21:1003–15.

Farwig N, Schabo DG, Albrecht J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J Ecol. 2017;105:20–8.

Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Stuart Chapin F, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Colin Prentice I, Ramankutty N, Snyder PK. Global consequences of land use. Science. 2005;309:570–4.

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci Adv. 2015;1:139.

Herrera JM, García D. The role of remnant trees in seed dispersal through the matrix: being alone is not always so sad. Biol Conserv. 2009;142:149–58.

Holyoak M, Heath SK. The integration of climate change, spatial dynamics, and habitat fragmentation: a conceptual overview. Integr Zool. 2016;11:40–59.

Janzen DH. Herbivores and the number of tree species in tropical forests. Am Nat. 1970;104:501–28.

Jordano P, Schupp EW. Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecol Monogr. 2000;70:591–615.

Larsen TH, Williams NM, Kremen C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett. 2005;8:538–47.

Li N, Fang SB, Li XH, An SQ, Lu CH. Differential contribution of frugivorous birds to dispersal patterns of the endangered Chinese yew (Taxus chinensis). Sci Rep. 2015. https://doi.org/10.1038/srep10045.

Li N, Bai B, Li XH, An SQ, Lu CH. Dispersal of remnant endangered trees in a fragmented and disturbed forest by frugivorous birds. J Plant Res. 2017;130:669–76.

MacKinnon JR, Phillipps K, He FQ. A field guide to the birds of China. New York: Oxford University Press; 2000.

Markl J, Schleuning M, Forget PM, Jordano P, Lambert JE, Traveset A, Joseph Wright S, Böhning-Gaese K. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv Biol. 2012;26:1072–81.

Martinez I, García D, Obeso JR. Differential seed dispersal patterns generated by a common assemblage of vertebrate frugivores in three fleshy-fruited trees. Ecoscience. 2008;15:189–99.

Moermond TC, Denslow JS. Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithol Monogr. 1985;36:865–97.

Moore JE, Swihart RK. Importance of fragmentation-tolerant species as seed dispersers in disturbed landscapes. Oecologia. 2007;151:663–74.

Mueller T, Lenz J, Caprano T, Fiedler W, Böhning-Gaese K. Large frugivorous birds facilitate functional connectivity of fragmented landscapes. J Appl Ecol. 2014;51:684–92.

Muñoz MC, Schaefer HM, Böhning-Gaese K, Schleuning M. Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos. 2017;126:823–32.

Pan Y, Bai B, Xiong T, Shi PJ, Lu CH. Seed handling by primary frugivores differentially influence post-dispersal seed removal of Chinese yew by ground-dwelling animals. Integr Zool. 2016;11:191–8.

Perez-Méndez N, Jordano P, Valido A. Downsized mutualisms: consequences of seed dispersers' body-size reduction for early plant recruitment. Perspect Plant Ecol. 2015;17:151–9.

Pogson B. Habitat fragmentation reduces biodiversity. Science. 2015;347:1325.

Schupp EW, Jordano P, Gomez JM. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 2010;188:333–53.

Schleuning M, Fründ J, García D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography. 2015;38:380–92.

Spiegel O, Nathan R. Incorporating dispersal distance into the disperser effectiveness framework: frugivorous birds provide complementary dispersal to plants in a patchy environment. Ecol Lett. 2007;10:718–28.

Suding KN, Lavorel S, Chapin FSIII, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biol. 2008;14:1125–40.

Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecol Lett. 2008;11:1351–63.

Wotton DM, Kelly D. Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon. J Biogeogr. 2012;39:1973–83.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 January 2018
Accepted: 29 March 2018
Published: 02 April 2018
Issue date: January 2018

Copyright

© The Author(s) 2018.

Acknowledgements

Acknowledgements

We thank Zhongwei Zheng and Tianshi Xiong for their contributions in the field work.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Return