Journal Home > Volume 8 , Issue 1
Background

The motivation of birds to proceed with migration is associated with both endogenous and exogenous factors. According to their migratory situation and to the characteristics of stopover sites, birds might exhibit migratory motivation differently among sites. Although migratory motivation of migrating birds has been well studied in many species, the investigation of the same species in different migratory situations and at different stopover sites is still limited. We predicted that birds at different stopover sites could differ in migratory disposition, including expression of migratory restlessness and responses to environmental cues.

Methods

Here we compared migration motivation and orientation of Great Knots (Calidris tenuirostris) at two stopover sites, Chongming Dongtan in the south Yellow Sea, which is a temporary rest site, and Yalujiang Estuary Wetland in the north Yellow Sea, which is a critical refuelling site, during northward migration. Modified Emlen funnels, with thermal paper inside to record scratches of the birds, were used to detect activity (intensity and direction) of birds. Environmental conditions, including wind direction and speed, cloud cover, tide condition, times of the day (before and after sunset) were recorded during experiments. Generalized linear models were used to detect the effects of endogenous and exogenous factors on the migratory motivation of the birds.

Results

In the south Yellow Sea, the migratory activity intensity of Great Knots was positively related to wind assistance. In the north Yellow Sea, where birds exhibited higher intensity of migratory activity than in the south, the intensity increased and the motivation to initiate migration grew stronger as the season advanced. The Great Knots exhibited wind-related orientation behaviour in the funnels at both sites.

Conclusions

The results suggest that the intensity of migratory motivation differed between the two sites. Departure decisions of Great Knots appear to be affected mainly by external factors at the temporary rest site in the south Yellow Sea but possibly by endogenous factors at the final pre-breeding refuelling site in the north Yellow Sea.


menu
Abstract
Full text
Outline
About this article

Springtime migratory restlessness and departure orientation of Great Knots (Calidris tenuirostris) in the south compared to the north Yellow Sea

Show Author's information Ning Hua1Susanne Åkesson2Qianyan Zhou1Zhijun Ma1( )
Coastal Ecosystems Research Station of Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden

Abstract

Background

The motivation of birds to proceed with migration is associated with both endogenous and exogenous factors. According to their migratory situation and to the characteristics of stopover sites, birds might exhibit migratory motivation differently among sites. Although migratory motivation of migrating birds has been well studied in many species, the investigation of the same species in different migratory situations and at different stopover sites is still limited. We predicted that birds at different stopover sites could differ in migratory disposition, including expression of migratory restlessness and responses to environmental cues.

Methods

Here we compared migration motivation and orientation of Great Knots (Calidris tenuirostris) at two stopover sites, Chongming Dongtan in the south Yellow Sea, which is a temporary rest site, and Yalujiang Estuary Wetland in the north Yellow Sea, which is a critical refuelling site, during northward migration. Modified Emlen funnels, with thermal paper inside to record scratches of the birds, were used to detect activity (intensity and direction) of birds. Environmental conditions, including wind direction and speed, cloud cover, tide condition, times of the day (before and after sunset) were recorded during experiments. Generalized linear models were used to detect the effects of endogenous and exogenous factors on the migratory motivation of the birds.

Results

In the south Yellow Sea, the migratory activity intensity of Great Knots was positively related to wind assistance. In the north Yellow Sea, where birds exhibited higher intensity of migratory activity than in the south, the intensity increased and the motivation to initiate migration grew stronger as the season advanced. The Great Knots exhibited wind-related orientation behaviour in the funnels at both sites.

Conclusions

The results suggest that the intensity of migratory motivation differed between the two sites. Departure decisions of Great Knots appear to be affected mainly by external factors at the temporary rest site in the south Yellow Sea but possibly by endogenous factors at the final pre-breeding refuelling site in the north Yellow Sea.

Keywords: Orientation, Yellow Sea, Stopover, Shorebirds, Departure decision, Migratory restlessness, Migratory situation, Spatio-temporal program

References(55)

Able KP. The orientation of passerine nocturnal migrants following offshore drift. Auk. 1977;94:320-30.

Able KP. Common themes and variations in animal orientation systems. Am Zool. 1991;31:157-67.

Åkesson S. Do passerines captured at an inland ringing site perform reverse migration in autumn? Ardea. 1999;87:129-38.

Åkesson S, Sandberg R. Migratory orientation of passerines at dusk, night and dawn. Ethology. 1994;98:177-91.

Åkesson S, Bäckman J. Orientation in pied flycatchers: the relative importance of magnetic and visual information at dusk. Anim Behav. 1999;57:819-28.

Åkesson S, Hedenström A. Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol. 2000;47:140-4.

Åkesson S, Karlsson L, Walinder G, Alerstam T. Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol. 1996a;38:293-302.

Åkesson S, Alerstam T, Hedenström A. Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol. 1996b;27:95-102.

Alerstam T. Optimal bird migration revisited. J Ornithol. 2011;152(Suppl 1):5-23.

Alerstam T, Gudmundsson GA, Jönsson PE, Karloson J, Linström Å. Orientation, migration routes and flight behaviour of Knots, Turnstones and Brant Geese departing from Iceland in spring. Arctic. 1990;43:201-14.

Bai QQ, Chen JZ, Chen ZH, Dong GT, Dong JT, Dong WX, Fu YQ, Han YX, Lu G, Li J, Liu Y, Lin Z, Meng DR, Martinez J, Ni GH, Shan K, Sun RJ, Tian SX, Wang FQ, Xu ZW, Yu RD, Yang J, Yang ZD, Zhang L, Zhang M, Zeng XW. Identification of coastal wetlands of international importance for waterbirds: a review of China Coastal Waterbird Surveys 2005-2013. Avian Res. 2015;6:12.

Bamford M, Watkins D, Bancroft W, Tischler G, Wahl J. Migratory shorebirds of the East Asian-Australasian Flyway: population estimates and internationally important sites. Canberra: Wetlands International, Oceania; 2008.
Batschelet E. Circular statistics in biology. London: Academic Press; 1981.

Battley PF. The northward migration of Arctic waders in New Zealand: departure behaviour, timing and possible migration routes of red knots and bar-tailed godwits from Farewell Spit. North-West Nelson. Emu. 1997;97:108-20.

Battley PF, Piersma T, Dietz MW, Tang S, Dekinga A, Hulsman K. Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc R Soc B. 2000;267:191-6.

Berthold P. Control of bird migration. London: Chapman and Hall; 1996.
Burnham KP, Anderson DR. Model selection and inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.

Choi CY, Gan XJ, Ma Q, Zhang KJ, Chen JK, Ma ZJ. Body condition and fuel deposition patterns of calidrid sandpipers during migratory stopover. Ardea. 2009;97:61-70.

Choi CY, Battley PF, Potter MA, Ma ZJ, Melville DS, Sukkaewmanee P. How migratory shorebirds selectively exploit prey at a staging site dominated by a single prey species. Auk. 2017;134:76-91.

Covino KM, Holberton RL. The influence of energetic condition on flight initiation and orientation of migratory songbirds in the Gulf of Maine region. Auk. 2011;128:313-20.

Deutschlander ME, Muheim R. Fuel reserves affect migratory orientation of thrushes and sparrows both before and after crossing an ecological barrier near their breeding grounds. J Avian Biol. 2009;40:85-9.

Emlen ST, Emlen JT. A technique for recording orientation of captive birds. Auk. 1966;83:361-7.

Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A. Magnetic cues trigger extensive refuelling. Nature. 2001;414:35-6.

Fusani L, Cardinale M, Carere C, Goymann W. Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett. 2009;5:302-5.

Grönroos J, Muheim R, Åkesson S. Orientation and autumn migration routes of juvenile sharp-tailed sandpipers at a staging site in Alaska. J Exp Biol. 2010;213:1829-35.

Gudmundsson GA, Sandberg R. Sanderlings (Calidris alba) have a magnetic compass: orientation experiments during spring migration in Iceland. J Exp Biol. 2000;203:3137-44.

Gwinner E. Circadian and circannual programmes in avian migration. J Exp Biol. 1996;99:39-48.

Hedenström A, Alerstam T. Climbing performance of migrating birds as a basis of estimating limits for fuel-carrying capacity and muscle work. J Exp Biol. 1992;164:19-38.

Henshaw I, Fransson T, Jakobsson S, Kullberg C. Geomagnetic field affects spring migratory direction in a long distance migrant. Behav Ecol Sociobiol. 2010;64:1317-23.

Henshaw I, Fransson T, Jakobsson S, Lind J, Vallin A, Kullberg C. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. J Exp Biol. 2008;211:649-53.

Kullberg C, Henshaw I, Jakobsson S, Johansson P, Fransson T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc R Soc B. 2007;274:2145-51.

Liechti F. Birds: Blowin' by the wind? J Ornithol. 2006;147:202-11.

Landys MM, Wingfield JC, Ramenofsky M. Plasma corticosterone increases during migratory restlessness in the captive white-crowned sparrow Zonotrichia leucophrys gambelli. Horm Behav. 2004a;46:574-81.

Landys MM, Piersma T, Ramenofsky M, Wingfield JC. Role of the low-affinity glucocorticoid receptor in the regulation of behavior and energy metabolism in the migratory red knot Calidris canutus islandica. Physiol Biochem Zool. 2004b;77:658-68.

Lisovski S, Gosbell K, Hassell C, Minton C. Tracking the full annual-cycle of the great knot Calidris tenuirostris, a long-distance migratory shorebird of the East Asian-Australasian Flyway. Wader Study. 2016;123:177-89.

Lõhmus M, Sandberg R, Holberton RL, Moore FR. Corticosterone levels in relation to migratory readiness in red-eyed vireos (Vireo olivaceus). Behav Ecol Sociobiol. 2003;54:233-9.

Ma ZJ, Hua N, Zhang X, Guo HQ, Zhao B, Ma Q, Xue WJ, Tang CD. Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis. 2011;153:755-67.

Ma ZJ, Hua N, Peng HB, Choi CY, Battley PF, Zhou QY, Chen Y, Ma Q, Jia N, Xue WJ, Bai QQ, Wu W, Feng XS, Tang CD. Differentiating between stopover and staging sites: functions of the southern and northern Yellow Sea for long-distance migratory shorebirds. J Avian Biol. 2013;44:504-12.

Mouritsen H. Redstarts, Phoenicurus phoenicurus, can orient in a true-zero magnetic field. Anim Behav. 1998;55:1311-24.

Mouritsen H, Feenders G, Hegemann A, Liedvogel M. Thermal paper can replace typewriter correction paper in Emlen funnels. J Ornithol. 2009;150:713-5.

Muheim R, Åkesson S, Alerstam T. Compass orientation and possible migration routes of passerine birds at high arctic latitude. Oikos. 2003;103:341-9.

Newton I. The migration ecology of birds. London: Academic Press; 2008.

Norberg RÅ, Norberg UM. Take-off, landing, and flight speed during fishing flights of Gavia stellata (Pont.). Ornis Scand. 1971;2:55-67.

Peng HB, Hua N, Choi C, Melville DS, Gao Y, Zhou QY, Chen Y, Xue WJ, Ma Q, Wu W. Adjusting migration schedules at stopping sites: time strategy of a long-distance migratory shorebird during northward migration. J Ornithol. 2015;156:191-9.

Piersma T, Jukema J. Budgeting the flight of a long distance migrant: changes in nutrient levels of Bar-tailed Godwits at successive spring staging sites. Ardea. 1990;78:315-37.

Piersma T, Zwarts L, Bruggemann JH. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea. 1990;78:157-84.

Prater AJ, Marchant JH, Vuorinen J. Guide to the identification and ageing of Holarctic waders. BTO field guide 17. Tring: British Trust for Ornithology; 1977.

Richardson WJ. Northeastward reverse migration of birds over Nova Scotia, Canada, in autumn. Behav Ecol Sociobiol. 1982;10:193-206.

Sandberg R. Stored fat and the migratory orientation of birds. In: Berthold P, Gwinner E, Sonnenschein E, editors. Avian migration. Berlin: Springer; 2003. p. 515-25.https://doi.org/10.1007/978-3-662-05957-9_35
DOI

Sandberg R, Gudmundsson GA. Orientation cage experiments with dunlins during autumn migration in Iceland. J Avian Biol. 1996;27:183-8.

Sandberg R, Pettersson J, Alerstam T. Why do migrating robins, Erithacus rubecula, captured at two nearby stopover sites orient differently? Anim Behav. 1988;36:865-76.

Sandberg R, Moore FR, Bäckman J, Lõhmus M. Orientation of nocturnally migrating Swainson's Thrush at dawn and dusk: importance of energetic condition and geomagnetic cues. Auk. 2002;119:201-9.

Tsvey A, Bulyuk VN, Kosarev V. Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol. 2007;61:1665-74.

Tulp I, McChesney S, de Goeij P. Migratory departures of waders from north-western Australia: behaviour, timing and possible migration routes. Ardea. 1994;82:201-21.

Yong W, Moore FR. Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor. 1993;95:934-43.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 February 2017
Accepted: 31 July 2017
Published: 11 August 2017
Issue date: January 2017

Copyright

© The Author(s) 2017.

Acknowledgements

Acknowledgements

We thank the Chongming Dongtan Nature Reserve and the Yalu Estuarine Wetland Nature Reserve for their support for our fieldwork. We thank Ran Feng, Xuan Zhang, and Jing Qian for helping with the orientation experiments, and Chi-Yeung Choi, Qingquan Bai, David Melville, Hebo Peng, Qiang Ma, Wenjie Xue, Wei Wu, Xuesong Feng, Hongxi Zang, Weiguo Jin, and Shifu Guo for their assistance in the field. We thank Xiao Xie for helping with data analysis. The writing of the manuscript was completed at Lund University with the help from members of the Animal Navigation Lab and the Centre for Animal Movement Research (both headed by S. Åkesson). This study was financially supported by the National Basic Research Program of China (2013CB430404), National Natural Science Foundation of China (31071939 and 31572280), and the State Scholarship Fund of China (201206100060). S. Åkesson is supported by a Project Grant (621-2010-5584) from the Swedish Research Council and a Linnaeus grant to the Centre for Animal Movement Research (CAnMove) from the Swedish Research Council (349-2007-8690) and Lund University.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Return