AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Accurate Indoor Navigation System Using Human-Item Spatial Relation

Qiongzheng Lin( )Yi Guo
School of Softeware, Tsinghua University, Beijing 100084, China.
Shenzhen Huachuang Intelligent Control and Robotics Co. Ltd, Shenzhen 518000, China.
Show Author Information

Abstract

Indoor navigation has received much attention by both industry and academia in recent years. To locate users, a number of existing methods use various localization algorithms in combination with an indoor map, which require expensive infrastructures deployed in advance. In this study, we propose the use of existing indoor objects with attached RFID tags and a reader to navigate users to their destinations, without the need for any additional hardware. The key insight upon which our proposal is based is that a person’s movement has an impact on the frequency shift values collected from indoor objects when they near a tag. We leverage this local human-item spatial relation to infer the user’s position and then navigate the user to the desired destination step by step. We implement a prototype navigation system, called RollCaller, and conduct a comprehensive range of experiments to examine its performance.

References

[1]
Riper T., Supermarkets could soon manipulate where you walk, http://www.forbes.com/sites/tomvanriper/2014/07/08/supermarkets-could-soon-control-where-you-walk/, 2016.
[2]
Zheng Y. and Li M., Fast tag searching protocol for large-scale rfid systems, IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp. 363-372, 2011.
[3]
Zheng Y. and Li M., Pet: Probabilistic estimating tree for large-scale rfid estimation, IEEE Transactions on Mobile Computing, vol. 11, pp. 37-46, 2012.
[4]
Xie L., Sheng B., Tan C. C., Han H., Li Q., and Chen D., Efficient tag identification in mobile rfid systems, in Proc. of IEEE INFOCOM, San Diego, CA, USA, 2010.
[5]
Sheng B., Tan C. C., Li Q., and Mao W., Finding popular categories for rfid tags, in Proc. of ACM MobiHoc, Hong Kong, China, 2008.
[6]
Qiao Y., Chen S., Li T., and Chen S., Energy-efficient polling protocols in rfid systems, in Proc. of ACM MobiHoc, Paris, France, 2011.
[7]
Yang L., Han J., Qi Y., Wang C., Gu T., and Liu Y., Season: Shelving inteference and joint identification in large-scale rfid systems, in Proc. of IEEE INFOCOM, Shanghai, China, 2011.
[8]
Yang L., Han J., Qi Y., and Liu Y., Identification-free batch authentication for rfid tags, in Proc. of IEEE ICNP, Kyoto, Japan, 2010.
[9]
Sen S., Lee J., Kim K. H., and Congdon P., Avoiding multipath to revive inbuilding WiFi localization, in Proc. of ACM Mobisys, Taipei, China, 2013.
[10]
Sen S., Radunovic B., Choudhury P. R., and Minka T., You are facing the mona lisa: Spot localization using phy layer information, in Proc. of ACM Mobisys, Low Wood Bay, Lake District, UK, 2012.
[11]
Wu K., Xiao J., Yi Y., Gao M., and Ni L. M., Fila: Fine-grained indoor localization, in Proc. of IEEE INFOCOM, Orlando, FL, USA, 2012.
[12]
Ni L. M., Liu Y., Lau Y. C., and Patil A. P., Landmarc: Indoor location sensing using active rfid, ACM Wireless Networks, vol. 11, no. 6, pp. 407, 2004.
[13]
Zhao Y., Liu Y., and Ni L. M., Vire: Active rfid-based localization using virtual reference elimination, in Proc. of ICPP, Xi’an, China, 2007.
[14]
Hekimian-Williams C., Grant B., Liu X., and Zhang Z., Accurate localization of rfid tags using phase difference, in Proc. of IEEE RFID, Guangzhou, China, 2010.
[15]
Nikitin P. V., Martinez R., Ramamurthy S., and Leland H., Phase based spatial identification of uhf rfid tags, in Proc. of IEEE RFID, Guangzhou, China, 2010.
[16]
Azzouzi S., Cremer M., Dettmar U., Kronberger R., and Knie T., New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach, in Proc. IEEE RFID, Orlando, FL, USA, 2011.
[17]
Shangguan L., Li Z., Yang Z., and Li M., Otrack: Order tracking for tags in mobile rfid system, IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 11, pp. 3066-3074, 2013.
[18]
Zhang D., Zhou J., Guo M., Cao J., and Li T., Tasa: Tag-free activity sensing using rfid tag arrays, IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 4, pp. 558-570, 2011.
[19]
Liu Y., Chen L., Pei J., Chen Q., and Zhao Y., Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays, IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 11, pp. 37-46, 2012.
[20]
Dobkin D. M., The RF in RFID: Passive UHF RFID in Practice. Newnes, 2008.
[21]
Li F., Zhao C., Ding G., Gong J., Liu C., and Zhao F., A reliable and accurate indoor localization method using phone inertial sensors, in Proc. of ACM Ubicomp, Portland, OR, USA, 2012.
[22]
Rai A., Chintalapudi K. K., Padmanabhan V. N., and Sen R., Zee: Zero-effort crowdsourcing for indoor localization, in Proc. of ACM Mobicom, Istanbul, Turkey, 2012.
[23]
Robertson P., Angermann M., and Krach B., Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors, in Proc. of ACM Ubicomp, Orlando, FL, USA, 2009.
[24]
Shen G., Chen Z., Zhang P., Moscibroda T., and Zhang Y., Walkie-markie: Indoor pathway mapping made easy, in Proc. of USENIX NSDI, Lombard, IL, USA, 2013.
[25]
Arete Pop Smart RFID Dongle Reader, http://www.arete-mobile.com/arete_pop.html, 2016.
[26]
Cho D., Mun M., Lee U., Kaiser W. J., and Gerla M., Autogait: A mobile platform that accurately estimates the distance walked, in Proc. of IEEE PerCom, Mannheim, Germany, 2010.
[27]
Wilson J. and Patwarl N., Radio tomographic imaging with wireless networks, IEEE Transactions on Mobile Computing, vol. 9, no. 5, pp. 621-632, 2010.
[28]
Liu T., Liu Y., Yang L., Guo Y., and Wang C., BackPos: High accuracy backscatter positioning system, IEEE Transactions on Mobile Computing, vol. 15, no. 3, p. 1, 2015.
[29]
Yang L., Guo Y., Liu T., Wang C., and Liu Y., Perceiving the slightest tag motion beyond localization, IEEE Transactions on Mobile Computing, vol. 14, no. 11, pp. 2363-2365, 2015.
[30]
Liu H., Gan Y., Yang J., Sidhom S., Wang Y., Chen Y., and Ye F., Push the limit of wifi based localization for smartphones, in Proc. of ACM Mobicom, Istanbul, Turkey, 2012.
[31]
Liu K., Liu X., and Lin L., Guoguo: Enabling fine-grained indoor localization via smartphone, in Proc. of ACM Mobisys, Taipei, Taiwan, 2013.
[32]
Peng C., Shen G., Zhang Y., Li Y., and Tan K., Beepbeep: A high accuracy acoustic ranging system using cots mobile devices, in Proc. of ACM Sensys, Sydney, Australia, 2007.
[33]
Gu W., Shangguan L., Yang Z., and Liu Y., Sleep hunter: Towards fine grained sleep stage tracking with smartphones, IEEE Transactions on Mobile Computing, vol. 15, no. 6, p. 1, 2015.
[34]
Yang Z., Zhou Z., and Liu Y., From rssi to csi: indoor localization via channel response, ACM Computing Surveys, vol. 46, no. 2, pp. 1-25, 2013.
[35]
Yang Z., Wu C., and Liu Y., Locating in fingerprint space: Wireless indoor localization with little human intervention, in Proc. of ACM Mobicom, Istanbul, Turkey, 2012
[36]
Wang J. and Katabi D., Dude, where’s my card?: RFID positioning that works with multipath and non-line of sight, in Proc. of ACM SIGCOMM, Hong Kong, China, 2013.
Tsinghua Science and Technology
Pages 521-537
Cite this article:
Lin Q, Guo Y. Accurate Indoor Navigation System Using Human-Item Spatial Relation. Tsinghua Science and Technology, 2016, 21(5): 521-537. https://doi.org/10.1109/TST.2016.7590321

593

Views

15

Downloads

4

Crossref

N/A

Web of Science

5

Scopus

2

CSCD

Altmetrics

Received: 23 July 2016
Revised: 07 August 2016
Accepted: 22 August 2016
Published: 18 October 2016
© The author(s) 2016
Return