[2]
Safavian S. R. and Landgrebe D., A survey of decision tree classifier methodology, IEEE Transactions on Systems, Man and Cybernetics, vol. 21, no. 3, pp. 660–674, 1991.
[3]
Cheng J., Fayyad U. M., Irani K. B., and Qian Z., Improved decision trees: A generalized version of ID3, in Proc. Fifth Int. Conf. Machine Learning, 1988, pp. 100-107
[4]
Quinlan J. R., Learning efficient classification procedures and their application to chess end games, in Machine Learning. Springer, 1983, pp. 463-482
[5]
Quinlan J. R., Induction of decision trees, Machine Learning, vol. 1, no. 1, pp. 81–106, 1986.
[6]
Quinlan J. R., C4.5: Programs for Machine Learning, vol. 1. Morgan Kaufmann, 1993.
[8]
Breiman L., Friedman J., Stone C. J., and Olshen R. A., Classification and Regression Trees. CRC Press, 1984.
[9]
Kass G. V., An exploratory technique for investigating large quantities of categorical data, Applied Statistics, vol. 29, no. 2, pp. 119–127, 1980.
[10]
Loh W.-Y. and Vanichsetakul N., Tree-structured classification via generalized discriminant analysis, Journal of the American Statistical Association, vol. 83, no. 403, pp. 715–725, 1988.
[11]
Mehta M., Rissanen J., and Agrawal R., Mdl-based decision tree pruning, KDD, vol. 21, pp. 216–221, 1995.
[12]
Gehrke J., Ramakrishnan R., and Ganti V., Rainforest-a framework for fast decision tree construction of large datasets, VLDB, vol. 98, pp. 416–427, 1998.
[13]
Gehrke J., Ganti V., Ramakrishnan R., and Loh W.-Y., Boat–optimistic decision tree construction, ACM SIGMOD Record, vol. 28, pp. 169–180, 1999.
[14]
Jin R. and Agrawal G., Communication and memory efficient parallel decision tree construction, SDM, pp. 119–129, 2003.
[15]
Ruggieri S., Efficient C4.5, Knowledge and Data Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 438–444, 2002.
[16]
Joshi M. V., Karypis G., and Kumar V., Scalparc: A new scalable and efficient parallel classification algorithm for mining large datasets, in Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing 1998, 1998, pp. 573-579
[17]
Quinlan J. R., Bagging, boosting, and C4.5, AAAI/IAAI, vol. 1, pp. 725–730, 1996.
[18]
Agrawal R., Ghosh S., Imielinski T., Iyer B., and Swami A., An interval classifier for database mining applications, in Proc. of the VLDB Conference, 1992, pp. 560-573.
[19]
Agrawal R., Imielinski T., and Swami A., Database mining: A performance perspective, Knowledge and Data Engineering, IEEE Transactions on, vol. 5, no. 6, pp. 914–925, 1993.
[20]
Shafer J., Agrawal R., and Mehta M., Sprint: A scalable parallel classifier for data mining, in Proc. 1996 Int. Conf. Very Large Data Bases, 1996, pp. 544-555.
[21]
Mehta M., Agrawal R., and Rissanen J., Sliq: A fast scalable classifier for data mining, in Advances in Database Technology EDBT’96, 1996, pp. 18-32