Journal Home > Volume 20 , Issue 5

Hepatitis C virus (HCV) treatment is on the cutting edge of medicine. Due to the high rate of mutations and low fidelity of HCV replication, resistant strains quickly become dominant in a viral population under the selection pressure of a drug. In this paper, we examined the drug resistance mechanism in the NS5A region of genotype 1a HCV virus by comparing the sequence data from interferon-ribavirin treated and untreated patients. To find the drug resistance difference, we used innovative Bayesian probability models to detect mutation combinations and inferred detailed interaction structures of these mutations. We aim to provide reference to drug design and mutation mechanism understanding through our work.


menu
Abstract
Full text
Outline
About this article

Investigating Genotype 1a HCV Drug Resistance in NS5A Region via Bayesian Inference

Show Author's information Yao FuGang ChenLizhi FuJing Zhang( )
Bina Technologies, Roche, Redwood City, CA 94065, USA.
financial service industry.
Department of Mathematics & Statistics, Georgia State University, Atlanta, GA 30303, USA.
Department of Statistics, Yale University, New Haven, CT 06520.

Abstract

Hepatitis C virus (HCV) treatment is on the cutting edge of medicine. Due to the high rate of mutations and low fidelity of HCV replication, resistant strains quickly become dominant in a viral population under the selection pressure of a drug. In this paper, we examined the drug resistance mechanism in the NS5A region of genotype 1a HCV virus by comparing the sequence data from interferon-ribavirin treated and untreated patients. To find the drug resistance difference, we used innovative Bayesian probability models to detect mutation combinations and inferred detailed interaction structures of these mutations. We aim to provide reference to drug design and mutation mechanism understanding through our work.

Keywords: Bayesian model, Hepatitis C virus (HCV), drug resistance, NS5A

References(29)

[1]
Poynard T., Leroy V., Cohard M., Thevenot T., Mathurin P., Opolon P., and Zarski J. P., Meta-analysis of interferon randomized trials in the treatment of viral hepatitis C: Effects of dose and duration, Hepatology, vol. 24, no. 4, pp. 778-789, 1996.
[2]
Davis G. L., Esteban-Mur R., Rustgi V., Hoefs J., Gordon S. C., Trepo C., Shiffman M. L., Zeuzem S., Craxi A., Ling M. H., et al., Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group, N. Engl. J. Med., vol. 339, no. 21, pp. 1493-1499, 1998.
[3]
McHutchison J. G., Gordon S. C., Schiff E. R., Shiffman M. L., Lee W. M., Rustgi V. K., Goodman Z. D., Ling M. H., Cort S., and Albrecht J. K., Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group, N. Engl. J. Med., vol. 339, no. 21, pp. 1485-1492, 1998.
[4]
Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C., Ogura Y., Izumi N., Marumo F., and Sato C., Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection, N. Engl. J. Med., vol. 334, no. 2, pp. 77-81, 1996.
[5]
Macdonald A. and Harris M., Hepatitis C virus NS5A: Tales of a promiscuous protein, J. Gen. Virol., vol. 85, no. Pt 9, pp. 2485-2502, 2004.
[6]
Gale M. J., Jr., Korth M. J., Tang N. M., Tan S. L., Hopkins D. A., Dever T. E., Polyak S. J., Gretch D. R., and Katze M. G., Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein, Virology, vol. 230, no. 2, pp. 217-227, 1997.
[7]
Jr Gale M., Blakely C. M., Kwieciszewski B., Tan S. L., Dossett M., Tang N. M., Korth M. J., Polyak S. J., Gretch D. R., and Katze M. G., Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: Molecular mechanisms of kinase regulation, Mol. Cell Biol., vol. 18, no. 9, pp. 5208-5218, 1998.
[8]
Enomoto N. and Sato C., Clinical relevance of hepatitis C virus quasispecies, J. Viral. Hepat., vol. 2, no. 6, pp. 267-272, 1995.
[9]
Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C., Izumi N., Marumo F., and Sato C., Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region, J. Clin. Invest., vol. 96, no. 1, pp. 224-230, 1995.
[10]
Gerotto M., Dal Pero F., Sullivan D. G., Chemello L., Cavalletto L., Polyak S. J., Pontisso P., Gretch D. R., and Alberti A., Evidence for sequence selection within the non-structural 5A gene of hepatitis C virus type 1b during unsuccessful treatment with interferon-alpha, J. Viral. Hepat., vol. 6, no. 5, pp. 367-372, 1999.
[11]
Fukuda M., Chayama K., Tsubota A., Kobayashi M., Hashimoto M., Miyano Y., Koike H., Kobayashi M., Koida I., Arase Y., et al., Predictive factors in eradicating hepatitis C virus using a relatively small dose of interferon, J. Gastroenterol Hepatol, vol. 13, no. 4, pp. 412-418, 1998.
[12]
Clemens M. J. and Elia A., The double-stranded RNA-dependent protein kinase PKR: Structure and function, J. Interferon Cytokine Res., vol. 17, no. 9, pp. 503-524, 1997.
[13]
Chung K. M., Song O. K., and Jang S. K., Hepatitis C virus nonstructural protein 5A contains potential transcriptional activator domains, Mol. Cells, vol. 7, no. 5, pp. 661-667, 1997.
[14]
Zhang J., Hou T., Wang W., and Liu J. S., Detecting and understanding combinatorial mutation patterns responsible for HIV drug resistance, Proc. Natl. Acad. Sci. USA, vol. 107, no. 4, pp. 1321-1326, 2010.
[15]
Svicher V., Alteri C., Artese A., Zhang J. M., Costa G., Mercurio F., D’Arrigo R., Alcaro S., Palu G., Clementi M., et al., Identification and structural characterization of novel genetic elements in the HIV-1 V3 loop regulating coreceptor usage, Antivir. Ther., vol. 16, no. 7, pp. 1035-1045, 2011.
[16]
Zhang B. Y., Zhang J., and Liu J. S., Block-based Bayesian epistasis association mapping with application to Wtccc Type 1 diabetes data, Ann. Appl. Stat., vol. 5, no. 3, pp. 2052-2077, 2011.
[17]
Svicher V., Cento V., Bernassola M., Neumann-Fraune M., Van Hemert F., Chen M., Salpini R., Liu C., Longo R., Visca M., et al., Novel HBsAg markers tightly correlate with occult HBV infection and strongly affect HBsAg detection, Antiviral Res., vol. 93, no. 1, pp. 86-93, 2012.
[18]
Chen M., Svicher V., Artese A., Costa G., Alteri C., Ortuso F., Parrotta L., Liu Y., Liu C., Perno C. F., et al., Detecting and understanding genetic and structural features in HIV-1 B subtype V3 underlying HIV-1 co-receptor usage, Bioinformatics, vol. 29, no. 4, pp. 451-460, 2013.
[19]
Mirabelli C., Surdo M., Van Hemert F., Lian Z., Salpini R., Cento V., Cortese M. F., Aragri M., Pollicita M., Alteri C., et al., Specific mutations in the C-terminus domain of HBV surface antigen significantly correlate with low level of serum HBV-DNA in patients with chronic HBV infection, J. Infect., vol. 70, no. 3, pp. 288-298, 2015.
[20]
Kozyryev I. and Zhang J., Bayesian analysis of complex interacting mutations in HIV drug resistance and cross-resistance, Adv. Exp. Med. Biol., vol. 827, pp. 367-383, 2015.
[21]
Fu Y., Chen G., Guo X., Pan Y., and Zhang J., Analyzing the effects of pretreatment diversity on HCV drug treatment responsiveness using Bayesian partition methods, J. Bioinfo. Proteomics. Rev., vol. 1, no. 1, pp. 1-6, 2015
[22]
Guo X., Zhang J., Cai Z., Du D., and Pan Y., DAM: A Bayesian method for detecting genome-wide associations on multiple diseases, Lecture Notes in Computer Science, vol. 9096, pp 96-107, 2015
[23]
Surdo M., Cortese M. F., Mirabelli C., Salpini R., Zhang J., Van Hemert F., Cento V., Pollicita M., Gubertini G., De Sanctis G. M., et al., P691 key patterns of HBsAg mutations correlate with mechanisms underlying levels of serum HBVDNA, Journal of Hepatology, 2014, .
[24]
Lian Z. C., Tian Q., Liu Y., and Zhang J., Detecting hepatitis B viral amino acid sequence mutations in cccult hepatitis B infections via Bayesian partition model, J. Proteomics Bioinform., 2013. .
[25]
Kozyryev I. and Zhang J., Bayesian exploration of multilocus interactions on the genome-wide scale, American Journal of Bioinformatics, vol. 1, no. 1, pp. 70-78, 2012. .
[26]
Zhang J., Wu Z., Gao C., and Zhang M., High-order interactions in rheumatoid arthritis detected by Bayesian method using genome-wide association studies data, American Medical Journal, vol. 3, no. 1, pp.56-66, 2012. .
[27]
Zhang J., Hou T., Liu Y., Chen G., Yang X., Liu J. and Wang W., Systematic investigation on interactions for HIV drug resistance and cross-resistance among protease inhibitors, Journal of Proteome Science & Computational Biology, 2012, .
[28]
Kozyryev I. and Zhang J., Bayesian determination of disease associated differences in haplotype blocks, Am. J. Bioinform., vol. 1, no. 1, pp. 20-29, 2012.
[29]
Zhang J., Zhang Q., Lewis D., and Zhang M. Q., A Bayesian method for disentangling dependent structure of epistatic interaction, Am. J. Biostat., vol. 2, no. 1, pp. 1-10, 2011.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 July 2015
Accepted: 06 August 2015
Published: 13 October 2015
Issue date: October 2015

Copyright

The author(s) 2015

Acknowledgements

Dr. Jing Zhang was supported by start-up funding and Sesseel Award from Yale University. The computation was done with the help from the Yale University Biomedical High Performance Computing Center, which was supported by the NIH grant RR19895.

Rights and permissions

Return