AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Accurate Identification of Mass Peaks for Tandem Mass Spectra Using MCMC Model

Hui LiChunmei Liu( )Mugizi Robert RwebangiraLegand Burge
Department of Computer Science, Howard University, Washington, DC 20059, USA.
Show Author Information

Abstract

In proteomics, many methods for the identification of proteins have been developed. However, because of limited known genome sequences, noisy data, incomplete ion sequences, and the accuracy of protein identification, it is challenging to identify peptides using tandem mass spectral data. Noise filtering and removing thus play a key role in accurate peptide identification from tandem mass spectra. In this paper, we employ a Bayesian model to identify proteins based on the prior information of bond cleavages. A Markov Chain Monte Carlo (MCMC) algorithm is used to simulate candidate peptides from the posterior distribution and to estimate the parameters for the Bayesian model. Our simulation and computational experimental results show that the model can identify peptide with a higher accuracy.

References

[1]
Du P. and Angeletti R. H., Automatic deconvolution of isotope-resolved mass spectra using variable selection and quantized peptide mass distribution, Anal. Chem., vol. 78, pp. 3385-3392, 2006.
[2]
Li X. J., Yi E. C., Kemp C. J., Zhang H., and Aebersold R., A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry, Molecular Cell Proteomics, vol. 4, pp. 1328-1340, 2005.
[3]
Schulz-Trieglaf O., Pfeifer N., Gröpl C., Kohlbacher O., and Reinert K., Lc-MSsim a simulation software for liquid chromatography mass spectrometry data, BMC Bioinformatics, vol. 9, p. 423, 2008.
[4]
Perkins D. N., Pappin D. J. C., Creasy D. M., and Cottrell J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, vol. 20, pp. 3551-3567, 1999.
[5]
Li X., Yi E. C., Kemp C. J., Zhang H., and Aebersold R., A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry, S. Mol. Cell Proteom., vol. 4, pp. 1328-1340, 2005.
[6]
Bellew M., Coram M., Fitzgibbon M., Igra M., Randolph T., Wang P., May D., Eng J., Fang R., Lin C., et al., A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS, Bioinformatics, vol. 22, no. 15, pp. 1902-1909, 2006.
[7]
Noy K. and Fasulo D., Improved model-based, platformindependent feature extraction for mass spectrometry, Bioinformatics, vol. 23, pp. 2528-2535, 2007.
[8]
Jaitly N., Mayampurath A., Littlefield K., Adkins J. N., Anderson G. A., and Smith R. D., Decon2LS: An opensource software package for automated processing and visualization of high resolution mass spectrometry data, BMC Bioinformatics, vol. 10, p. 87, 2009.
[9]
Sturm M., Bertsch A., Grpl C., Hildebrandt A., Hussong R., Lange E., Pfeifer N., Schulz-Trieglaff O., Zerck A., Reinert K., and Kohlbacher O., OpenMS - An open-source software framework for mass spectrometry, BMC Bioinformatics, vol. 9, p. 163, 2008.
[10]
Du P. and Angeletti R. H., Automatic deconvolution of isotope-resolved mass spectra using variable selection and quantized peptide mass distribution, Anal. Chem., vol. 78, pp. 3385-3392, 2006.
[11]
Zhang J., Wang H., Suffredini A., Gonzales D., Gonzales E., Huang Y., and Zhou X., Bayesian peak detection for pro-TOF MS MALDI data, in Proc of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, USA, 2008, pp. 661-664.
[12]
Sun Y., Zhang J., Braga-Neto U., and Dougherty E. R., BPDA-A Bayesian peptide detection algorithm for mass spectrometry, BMC Bioinformatics, vol. 11, p. 490, 2010. .
[13]
Huang Y., Triscari J. M., Pasa-Tolic L., Anderson A. G., Lipton M. S., Smith R. D., and Wysocki V. H., Dissociation behavior of doubly-charged tryptic peptides: Correlation of gas-phase cleavage abundance with ramachandran plots, Journal of American Chemical Society, vol. 126, pp. 3034-3035, 2004.
[14]
Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., and Teller E., Equation of state calculations by fast computing machines, Journal of Chemical Physics, vol. 21, no. 6, pp. 1087-1092, 1953.
[15]
Hastings W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol. 57, no. 1, pp. 97-109, 1970.
[16]
Andrieu C., de Freitas N., Doucet A., and Jordan M., An introduction to MCMC for machine learning, Machine Learning, vol. 50, no. 1, p. 543, 2003.
[17]
Sorensen D. and Gianola D., Likelihood, Bayesian and MCMC Methods in Quantitative Genetics. Springer, 2002.
[18]
Geman S. and Geman D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, 1984.
[19]
Gelfand A. and Smith A., Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, vol. 85, no. 410, pp. 398-409, 1990.
[20]
Robert C. P. and Casella G., Monte Carlo Statistical Methods. Springer-Verlag, 1990.
[21]
Frank A. and Pevzner P., PepNovo: de novo peptide sequencing via probabilistic network modeling, Anal. Chem., vol. 77, no. 4, pp. 964-973, 2005.
Tsinghua Science and Technology
Pages 453-459
Cite this article:
Li H, Liu C, Rwebangira MR, et al. Accurate Identification of Mass Peaks for Tandem Mass Spectra Using MCMC Model. Tsinghua Science and Technology, 2015, 20(5): 453-459. https://doi.org/10.1109/TST.2015.7297744

540

Views

55

Downloads

0

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 January 2015
Revised: 07 August 2015
Accepted: 10 August 2015
Published: 13 October 2015
The author(s) 2015
Return