AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Randomness in the Hybrid Modeling and Simulation of Insulin Secretion Pathways in Pancreatic Islets

Yang PuDavid C. SamuelsLayne T. WatsonYang Cao( )
Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
Show Author Information

Abstract

Insulin secreted by pancreatic islet β-cells is the principal regulating hormone of glucose metabolism. Disruption of insulin secretion may cause glucose to accumulate in the blood, and result in diabetes mellitus. Although deterministic models of the insulin secretion pathway have been developed, the stochastic aspect of this biological pathway has not been explored. The first step in this direction presented here is a hybrid model of the insulin secretion pathway, in which the delayed rectifying K + channels are treated as stochastic events. This hybrid model can not only reproduce the oscillation dynamics as the deterministic model does, but can also capture stochastic dynamics that the deterministic model does not. To measure the insulin oscillation system behavior, a probability-based measure is proposed and applied to test the effectiveness of a new remedy.

References

[1]
De Reuille P. B., Bohn-Courseau I., Ljung K., Morin H., Carraro N., Godin C., and Traas J., Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis, Proc. Natl. Acad. Sci. USA, vol. 103, pp. 1627-1632, 2006.
[2]
Jiang N., Cox R. D., and Hancock J. M., A kinetic core model of the glucose-stimulated insulin secretion network of pancreatic beta cells, Mamm. Genome, vol. 18, pp. 508-520, 2007.
[3]
Chen K., Calzone L., Csikasz-Nagy A., Cross F., Novak B., and Tyson J., Integrative analysis of cell cycle control in budding yeast, Mol. Biol. Cell, vol. 15, pp. 3841-3862, 2004.
[4]
Gillespie D., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., vol. 22, no. 4, pp. 403-434, 1976.
[5]
Gillespie D., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., vol. 81, pp. 2340-2361, 1977.
[6]
McAdams H. and Arkin A., Stochastic mechanism in gene expression, Proc. Natl. Acad. Sci. USA, vol. 94, pp. 814-819, 1997.
[7]
Arkin A., Ross J., and McAdams H., Stochastic kinetic analysis of developmental pathway bifurcation in phase-infected escherichia coli cells, Genetics, vol. 149, pp. 1633-1648, 1998.
[8]
McAdams H. and Arkin A., It’s noisy business! Trends in Genetics, vol. 15, pp. 65-69, 1999.
[9]
Feorof N. and Fontana W., Small numbers of big molecules, Science, vol. 297, pp. 1129-1131, 2002.
[10]
Gibson M. and Bruck J., Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem., vol. 104, pp. 1876-1889, 2000.
[11]
Haseltine E. and Rawlings J., Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., vol. 117, pp. 6959-6969, 2002.
[12]
Cerasi E., Aetiology of type ii diabetes, in Insulin: Molecular Biology to Pathology, Ashcroft F. M., ed. Oxford University Press, 1992, pp. 347-392.
[13]
Nesher R., Modeling phasic insulin release: Immediate and time-dependent effects of glucose, Diabetes, vol. 51, pp. S53-S59, 2002.
[14]
Bertram R., Satin L. S., Pedersen M. G., Luciani D. S., and Sherman A., Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets, Biophysical Journal, vol. 92, pp. 1544-1555, 2007.
[15]
Bertram R. and II Arceo R. C., A mathematical study of the differential effects of two SERCA isoforms on Ca2+ oscillations in pancreatic islets, Bulletin of Mathematical Biology, vol. 70, pp. 1251-1271, 2008.
[16]
Bertram R., Gram P. M., Luciani D. S., and Sherman A., A simplified model for mitochondrial atp production, Journal of Theoretical Biology, vol. 243, pp. 575-586, 2006.
[17]
Pu Y., Lee S., Samuels D., Watson L., and Cao Y., The effect of unhealthy-cells in synchronized insulin secretion, BMC Medical Genomics, vol. 6, no. Suppl 3, p. S6, 2013.
[18]
Nielsen K., Sorensen P. G., Hynne F., and Buss H. G., Sustained oscillations in glycolysis: An experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations, Biophys. Chem., vol. 72, pp. 49-62, 1998.
[19]
Wolheim C. B. and Maechler P., Beta cell mitochondria and insulin secretion: Messenger role of nucleotides and metabolites, Diabetes, vol. 51, pp. 37-42, 2002.
[20]
Arredouani A., Henquin J. C., and Gilon P., Contribution of the endoplasmic reticulum to the glucose-induced Ca2+ response in mouse pancreatic islet, Am. J. Physiol., vol. 282, pp. E982-E991, 2002.
[21]
Kindmark H., Kohler M., Brown G., Bränström R., Larsson O., and Berggren P.-O., Glucose induced oscillation in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta cell, J. Biol. Chem., vol. 276, pp. 34530-34536, 2001.
[22]
Cao Y., Gillespie D. T., and Petzold L. R., Adaptive explicit-implicit tau-leaping method with automatic tau selection, J. Chem. Phys., vol. 126, no. 22, p. 224101, 2007.
[23]
Pu Y., Lee S., Samuels D., Watson L., and Cao Y., The effect of unhealthy-cells in synchronized insulin secretion, in Proc. 2012 IEEE International Conference on Bioinformatics and Biomedicine, 2012, pp. 1-4.
[24]
Pu Y., Lee S., Samuels D., Watson L., and Cao Y., Hybrid modeling and simulation of insulin secretion pathway in pancreatic islets, in Proc. 2010 IEEE International Conference on Bioinformatics and Bioengineering, 2010, pp. 156-161.
[25]
Uyeda K., Furuya E., and Luby L., The effect of natural and synthetic d-fructose 2,6-biphosphate on the regulatory kinetic-properties of liver and muscle phosphofructokinases, The Journal of Biology Chemistry, vol. 256, pp. 8394-8399, 1981.
[26]
Magnus G. and Keizer J., Model of beta-cell mitochondrial calcium handling and electrical activity. i. Cytoplasmic variables, Am. J. Physiol., vol. 274, pp. C1158-C1173, 1998.
[27]
Magnus G. and Keizer J., Model of beta-cell mitochondrial calcium handling and electrical activity. ii. Cytoplasmic variables, Am. J. Physiol., vol. 274, pp. C1174-C1184, 1998.
[28]
Cortassa S., Aon M. A., Marb醤 E., Winslow R. L., and O’Rourke B., An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics, Biophys. J., vol. 84, pp. 2734-2755, 2002.
[29]
Wu F., Yang F., Vinnakota K. C., and Beard D. A., Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology, Journal of Biological Chemistry, vol. 282, pp. 24525-24537, 2007.
[30]
Shibasaki T., Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart, J. Physiol., vol. 387, pp. 227-250, 1987.
[31]
Fall C. P., Marland E. S., Wagner J. M., and Tyson J. J., Computational Cell Biology. Springer-Verlag, 2002.
[32]
Hindmarsh A. C., ODEPACK, a systematized collection of ODE solvers, Scientific Computing, vol. 55, p. C64, 1983.
[33]
Zimliki C. L., Mears D., and Sherman A., Three roads to islet bursting: Emergent oscillations in coupled phantom bursters, Biophys. J., vol. 87, pp. 193-206, 2004.
[34]
Valdeolmillos M., Santos R., Contreras D., Soria B., and Rosario L., Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical-activity in single mouse islets of langerhans, FEBS LETTERS, vol. 259, pp. 19-23, 1989.
[35]
Porksen N., Hollingdal M., Juhl C., Butler P., Veldhuis J. D., and Schmitz O., Pulsatile insulin secretion: Detection, regulation, and role in diabetes, Diabetes, vol. 51, pp. S245-S254, 2002.
Tsinghua Science and Technology
Pages 441-452
Cite this article:
Pu Y, Samuels DC, Watson LT, et al. Randomness in the Hybrid Modeling and Simulation of Insulin Secretion Pathways in Pancreatic Islets. Tsinghua Science and Technology, 2015, 20(5): 441-452. https://doi.org/10.1109/TST.2015.7297743

535

Views

54

Downloads

0

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 July 2015
Accepted: 06 August 2015
Published: 13 October 2015
The author(s) 2015
Return