AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,013.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Mono-isotope Prediction for Mass Spectra Using Bayes Network

Department of Systems and Computer Science, Howard University, Washington, DC 20059, USA.
Show Author Information

Abstract

Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.

References

[1]
L. Beretta, Proteomics from the clinical perspective: Many hopes and much debate, Nat. Methods, vol. 4, pp. 785-786, 2007.
[2]
O. N. Jensen, Interpreting the protein language using proteomics, Nat. Rev. Mol. Cell Biol., vol. 7, pp. 391-403, 2006.
[3]
K. R. Clauser, P. Baker, and A. L. Burlingame, Role of accurate mass measurement (+/- 10ppm) in protein identification strategies employing MS or MS/MS and database searching, Anal. Chem., vol. 71, pp. 2871-2882, 1999.
[4]
F. Desiere, E. W. Deutsch, A. I. Nesvizhskii, P. Mallick, N. L. King, J. K. Eng, A. Aderem, R. Boyle, E. Brunner, S. Donohoe, et al., Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry, Genome Biol., vol. 6, p. R9, 2005.
[5]
W. K. Eng, L. Faucette, M. M. McLaughlin, R. Cafferkey, Y. Koltin, R. A. Morris, P. R. Young, R. K. Johnson, and G. P. Livi, The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth, Gene, vol. 151, pp. 61-71, 1994.
[6]
D. Goldberg and L. Logan, Unlinked anonymous testing indicates antenatal HIV testing in England and Scotland is being successfully implemented, Euro Surveill, vol. 10, pp. E050519-E050514, 2005.
[7]
W. Zhu, J. W. Smith, and C. M. Huang, Mass spectrometry-based label-free quantitative proteomics, J. Biomed. Biotechnol., p. 840518, 2010
[8]
H. Zhang, S. Chen, and L. Huang, Proteomics-based identification of proapoptotic caspase adapter protein as a novel serum marker of non-small cell lung cancer, (in Chinese), Chinese Journal of Lung Cancer, vol. 15, pp. 287-293, 2013
[9]
R. Gras, M. Muller, E. Gasteiger, S. Gay, P. A. Binz, W. Bienvenut, C. Hoogland, J. C. Sanchez, A. Bairoch, D. F. Hochstrasser, and R. D. Appel, Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection, Electrophoresis, vol. 20, pp. 3535-3550, 1999.
[10]
D. M. Horn, R. A. Zubarev, and F. W. McLafferty, Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules, J. Am. Soc. Mass Spectrom, vol. 11, pp. 320-332, 2000.
[11]
M. W. Senko, S. C. Beu, and F. W. McLaffertycor, Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions, J. Am. Soc. Mass Spectrom, vol. 6, pp. 229-233, 1995.
[12]
Z. Zhang and A. G. Marshall, A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra, J. Am. Soc. Mass Spectrom, vol. 9, pp. 225-233, 1998.
[13]
P. Du and R. H. Angeletti, Automatic deconvolution of isotope-resolved mass spectra using variable selection and quantized peptide mass distribution, Anal. Chem., vol. 78, pp. 3385-3392, 2006.
[14]
B. Y. Renard, M. Kirchner, H. Steen, J. A. Steen, and F. A. Hamprecht, NITPICK: Peak identification for mass spectrometry data, BMC Bioinformatics, vol. 9, p. 355, 2008.
[15]
J. Samuelsson, D. Dalevi, F. Levander, and T. Rognvaldsson, Modular, scriptable and automated analysis tools for highthroughput peptide mass fingerprinting, Bioinformatics, vol. 20, pp. 3628-3635, 2004.
[16]
X. J. Li, E. C. Yi, C. J. Kemp, H. Zhang, and R. Aebersold, A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry, Mol. Cell Proteomics, vol. 4, pp. 1328-1340, 2005.
[17]
M. Wehofsky and R. Hoffmann, Automated deconvolution and deisotoping of electrospray mass spectra, J. Mass Spectrom, vol. 37, pp. 223-229, 2002.
[18]
L. Chen, S. K. Sze, and H. Yang, Automated intensity descent algorithm for interpretation of complex high-resolution mass spectra, Anal. Chem., vol. 78, pp. 5006-5018, 2006.
[19]
A. Assawamakin, S. Prueksaaroon, S. Kulawonganunchai, P. J. Shaw, V. Varavithya, T. Ruangrajitpakorn, and S. Tongsima, Biomarker selection and classification of “-omics” data using a two-step Bayes classification framework, Biomed. Res. Int., 2013, .
[20]
M. Bellgard, R. Taplin, B. Chapman, A. Livk, C. Wellington, A. Hunter, and R. Lipscombe, Classification of fish samples via an integrated proteomics and bioinformatics approach, Proteomics, vol. 13, pp. 3124-3130, 2011.
[21]
K. X. Zhang and B. F. Ouellette, CAERUS: Predicting CAncER oUtcomeS using relationship between protein structural information, protein networks, gene expression data, and mutation data, PLoS Comput. Biol., vol. 7, p. e1001114, 2010.
[22]
G. I. Webb, Naive Bayes, in Encyclopedia ofMachine Learning, C. Sammut and G. I. Webb, Ed. New York, NY, USA: Springer, 2010, pp. 713-714.
[23]
Z. Hoare, Landscapes of naive Bayes classifiers, Pattern Analysis and Applications, vol. 11, p. 5972, 2008.
[24]
A. L. Rockwood, S. L. Van Orden, and R. D. Smith, Ultrahigh resolution isotope distribution calculations, Rapid Commun. Mass Spectrom, vol. 10, p. 5459, 1996.
[25]
A. M. Mayampurath, N. Jaitly, S. O. Purvine, M. E. Monroe, K. J. Auberry, J. N. Adkins, and R. D. Smith, DeconMSn: A software tool for accurate parent ion monoisotopic mass determination for tandem mass spectra, Bioinformatics, vol. 24, no. 7, pp. 1021-1023, 2008.
Tsinghua Science and Technology
Pages 617-623
Cite this article:
Li H, Liu C, Rwebangira MR, et al. Mono-isotope Prediction for Mass Spectra Using Bayes Network. Tsinghua Science and Technology, 2014, 19(6): 617-623. https://doi.org/10.1109/TST.2014.6961030

554

Views

12

Downloads

2

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 18 May 2014
Revised: 09 June 2014
Accepted: 16 June 2014
Published: 20 November 2014
The Author(s)
Return