AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction

Lei Zhaoa,1Jinxia Jiangb,1Shuhao XiaoaZhao LiaJunjie WangaXinxin WeiaQingquan KongcJun Song ChenaRui Wua( )
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
Chongqing Medical and Pharmaceutical College, Chongqing, 401331, PR China
Institute for Advanced Study, Chengdu University, Chengdu, 610106, PR China

1 These authors contributed equally to this work.

Show Author Information

Abstract

The oxygen reduction reaction (ORR) electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles (NPs) on a porous carbon support with large surface area. However, such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores, in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support. Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers. Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential (E1/2) of 0.911 ​V versus reversible hydrogen electrode (vs. RHE) and enhanced durability with only decreasing 11 ​mV after 30,000 potential cycles, compared to a more significant drop of 24 ​mV in E1/2 of Pt/C catalysts (after 10,000 potential cycling). Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support, inhibiting the migration and aggregation of NPs during the ORR.

References

[1]

M.C. Luo, Z.L. Zhao, Y.L. Zhang, Y.J. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y.N. Qin, J.-Y. Ma, F. Lin, D. Su, G. Lu, S.J. Guo, Nature 574 (2019) 81–85.

[2]

X.X. Wang, M.T. Swihart, G. Wu, Nat. Catal. 2 (2019) 578–589.

[3]

Y. Nie, J. Deng, W. Jin, W. Guo, G. Wu, M. Deng, J. Zhou, R. Yang, S. Zhang, Z. Wei, J. Alloys Compd. 884 (2021), 161063.

[4]

Z. Yu, C. Liu, J. Chen, Z. Yuan, Y. Chen, L. Wei, Nano Mater. Sci. (2021), https://doi.org/10.1016/j.nanoms.2021.05.008.

[5]

L. Zhao, R. Wu, J. Wang, Z. Li, X. Wei, J.S. Chen, Y. Chen, J. Energy Chem. 60 (2021) 61–74.

[6]

X.-F. Han, N. Batool, W.-T. Wang, H.-T. Teng, L. Zhang, R. Yang, J.-H. Tian, ACS Appl. Mater. Interfaces 13 (2021) 37133–37141.

[7]

Y. Nie, L. Li, Z. Wei, Chem. Commun. 57 (2021) 12898–12913.

[8]

X. Qi, T. Yang, P. Li, Z. Wei, Nano Mater. Sci. (2021), https://doi.org/10.1016/j.nanoms.2021.06.002.

[9]

A.L. Wang, H. Xu, J.X. Feng, L.X. Ding, Y.X. Tong, G.R. Li, J. Am. Chem. Soc. 135 (2013) 10703–10709.

[10]

V. Yarlagadda, M.K. Carpenter, T.E. Moylan, R.S. Kukreja, R. Koestner, W. Gu, L. Thompson, A. Kongkanand, ACS Energy Lett. 3 (2018) 618–621.

[11]

J. Li, Z. Xi, Y.T. Pan, J.S. Spendelow, P.N. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y.S. Kim, P. Zhang, S. Sun, J. Am. Chem. Soc. 140 (2018) 2926–2932.

[12]

J. Wang, C.-X. Zhao, J.-N. Liu, D. Ren, B.-Q. Li, J.-Q. Huang, Q. Zhang, Nano Mater. Sci. 3 (2021) 313–318.

[13]

L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su, Y.X. Tong, J. Am. Chem. Soc. 134 (2012) 5730–5733.

[14]

H. Yu, L. Zhang, S. Gao, H. Wang, Z. He, Y. Xu, K. Huang, J. Catal. 396 (2021) 342–350.

[15]

W. Zhao, Y. Ye, W. Jiang, J. Li, H. Tang, J. Hu, L. Du, Z. Cui, S. Liao, J. Mater. Chem. 8 (2020) 15822–15828.

[16]

Z. Wang, Y. Mai, Y. Yang, L. Shen, C. Yan, ACS Appl. Mater. Interfaces 13 (2021) 38138–38146.

[17]

J. Liang, Z. Zhao, N. Li, X. Wang, S. Li, X. Liu, T. Wang, G. Lu, D. Wang, B.J. Hwang, Y. Huang, D. Su, Q. Li, Adv. Energy Mater. 10 (2020), 2000179.

[18]

S. Sharma, B.G. Pollet, J. Power Sources 208 (2012) 96–119.

[19]

X.X. Wang, S. Hwang, Y.-T. Pan, K. Chen, Y. He, S. Karakalos, H. Zhang, J.S. Spendelow, D. Su, G. Wu, Nano Lett. 18 (2018) 4163–4171.

[20]

K.Y. Cho, Y.S. Yeom, H.Y. Seo, A.S. Lee, X. Huy Do, J.P. Hong, H.-K. Jeong, K.-Y. Baek, H.G. Yoon, Electrochim. Acta 257 (2017) 412–422.

[21]

M. Karuppannan, Y. Kim, S. Gok, E. Lee, J.Y. Hwang, J.-H. Jang, Y.-H. Cho, T. Lim, Y.-E. Sung, O.J. Kwon, Energy Environ. Sci. 12 (2019) 2820–2829.

[22]

S. Chen, Z. Wei, X. Qi, L. Dong, Y.G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 134 (2012) 13252–13255.

[23]

Y. Liu, L. Chen, T. Cheng, H. Guo, B. Sun, Y. Wang, J. Power Sources 395 (2018) 66–76.

[24]

Z. Gao, Y. Qin, Acc. Chem. Res. 50 (2017) 2309–2316.

[25]

W. Wu, Z. Zhang, Z. Lei, X. Wang, Y. Tan, N. Cheng, X. Sun, ACS Appl. Mater. Interfaces 12 (2020) 10359–10368.

[26]

K. Yang, P. Jiang, J. Chen, Q. Chen, ACS Appl. Mater. Interfaces 9 (2017) 32106–32113.

[27]

Q. Wang, S. Chen, F. Shi, K. Chen, Y. Nie, Y. Wang, R. Wu, J. Li, Y. Zhang, W. Ding, Y. Li, L. Li, Z. Wei, Adv. Mater. 28 (2016) 10673–10678.

[28]

K.A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R.R. Adzic, Nano Lett. 12 (2012) 6266–6271.

[29]

L. Li, Y. Ji, X. Luo, S. Geng, M. Fang, Y. Pi, Y. Li, X. Huang, Q. Shao, Small 17 (2021), e2103798.

[30]

Y. Xue, H. Li, X. Ye, S. Yang, Z. Zheng, X. Han, X. Zhang, L. Chen, Z. Xie, Q. Kuang, L. Zheng, Nano Res. 12 (2019) 2490–2497.

[31]

Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon, S. Karakalos, D. Li, M. Chen, Y. He, M. Wang, Z. Liu, G. Wang, H. Zhou, Z. Feng, D. Su, J.S. Spendelow, G. Wu, Energy Environ. Sci. 12 (2019) 2830–2841.

[32]

M. Chen, S. Hwang, J. Li, S. Karakalos, K. Chen, Y. He, S. Mukherjee, D. Su, G. Wu, Nanoscale 10 (2018) 17318–17326.

[33]

L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao, Q. Zhang, L. Gu, X. Feng, S. Yuan, L. Wang, B. Wang, Angew. Chem. Int. Ed. 60 (2021) 27324–27329.

[34]

X. Zhu, R. Amal, X. Lu, Small 15 (2019), e1804524.

[35]

C. Galeano, J.C. Meier, M. Soorholtz, H. Bongard, C. Baldizzone, K.J.J. Mayrhofer, F. Schüth, ACS Catal. 4 (2014) 3856–3868.

[36]

Y. Li, F. Cheng, J. Zhang, Z. Chen, Q. Xu, S. Guo, Small 12 (2016) 2839–2845.

[37]

S. Zaman, Y.Q. Su, C.L. Dong, R. Qi, L. Huang, Y. Qin, Y.C. Huang, F.M. Li, B. You, W. Guo, Q. Li, S. Ding, B. Yu Xia, Angew. Chem. Int. Ed. 61 (2022), e202115835.

[38]

W. Zhang, M. Sun, J. Yin, K. Lu, U. Schwingenschlögl, X. Qiu, H.N. Alshareef, Adv. Energy Mater. 11 (2021), 2101928.

[39]

J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D.J. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, Nat. Commun. 8 (2017), 15938.

[40]

J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, J.M. JimenezMateos, J. Am. Chem. Soc. 118 (1996) 8071–8076.

[41]

S. Wang, L. Zhang, Z. Xia, A. Roy, D.W. Chang, J.-B. Baek, L. Dai, Angew. Chem. Int. Ed. 51 (2012) 4209–4212.

[42]

T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 98 (2007), 196803.

[43]

Y. Xiong, Y. Ma, L. Zou, S. Han, H. Chen, S. Wang, M. Gu, Y. Shen, L. Zhang, Z. Xia, J. Li, H. Yang, J. Catal. 382 (2020) 247–255.

[44]

L. Gao, T. Sun, X. Tan, M. Liu, F. Xue, B. Wang, J. Zhang, Y.-F. Lu, C. Ma, H. Tian, S. Yang, S.C. Smith, H. Huang, Appl. Catal., B 303 (2022), 120918.

[45]

L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma, S. Lu, Z. Peng, J. Yang, A. Pan, H. Huang, J. Am. Chem. Soc. 141 (2019) 18083–18090.

[46]

W.H. Lai, B.W. Zhang, Z. Hu, X.M. Qu, Y.X. Jiang, Y.X. Wang, J.Z. Wang, H.K. Liu, S.L. Chou, Adv. Funct. Mater. 29 (2019), 1807340.

[47]

S. Wang, L. Xiong, J. Bi, X. Zhang, G. Yang, S. Yang, ACS Appl. Mater. Interfaces 10 (2018) 27009–27018.

[48]

B.Y. Xia, H.B. Wu, N. Li, Y. Yan, X.W. Lou, X. Wang, Angew. Chem. Int. Ed. 54 (2015) 3797–3801.

[49]

G. Wang, B. Huang, L. Xiao, Z. Ren, H. Chen, D. Wang, H.D. Abruna, J. Lu, L. Zhuang, J. Am. Chem. Soc. 136 (2014) 9643–9649.

[50]

L. Guo, W.-J. Jiang, Y. Zhang, J.-S. Hu, Z.-D. Wei, L.-J. Wan, ACS Catal. 5 (2015) 2903–2909.

[51]

S. Rudi, C. Cui, L. Gan, P. Strasser, Electrocatalysis 5 (2014) 408–418.

[52]

C. Cui, M. Ahmadi, F. Behafarid, L. Gan, M. Neumann, M. Heggen, B.R. Cuenya, P. Strasser, Faraday Discuss 162 (2013) 91–112.

[53]

H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, J. Am. Chem. Soc. 135 (2013) 7130–7133.

[54]

Z. Wang, X. Yao, Y. Kang, L. Miao, D. Xia, L. Gan, Adv. Funct. Mater. 29 (2019), 1902987.

[55]

H. Zhu, S. Zhang, D. Su, G. Jiang, S. Sun, Small 11 (2015) 3545–3549.

Nano Materials Science
Pages 329-334
Cite this article:
Zhao L, Jiang J, Xiao S, et al. PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction. Nano Materials Science, 2023, 5(3): 329-334. https://doi.org/10.1016/j.nanoms.2022.04.001

321

Views

8

Downloads

43

Crossref

46

Web of Science

44

Scopus

0

CSCD

Altmetrics

Published: 27 April 2022
© 2022 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return