AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction

Xiaojun Zenga,1( )Haiqi Zhanga,1Xiaofeng Zhangb( )Qingqing ZhangaYunxia Chena( )Ronghai YucMartin Moskovitsd
School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
Guangdong Academy of Science, Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou, 510650, China
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, United States

1 These authors contributed equally to this work.

Show Author Information

Abstract

Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction (OER). It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously. Here, a series of CoP nanoparticles (NPs) confined in an SiO2 matrix (SiO2/CoxP) is designed and synthesized as OER electrocatalysts. The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co2P and CoP. These are firmly confined in the SiO2 matrix. The coupling of multi-size and multi-component CoP catalysts can regulate reaction kinetics and electron transfer ability, enrich the active sites, and eventually promote the intrinsic OER activity. The SiO2 matrix provides abundant porous structure and oxygen vacancies, and these facilitate the exposure of active sites and improve conductivity. Because of the synergy and interplay of multi-sized/component CoxP NPs and the porous SiO2 matrix, the unique SiO2/CoP heterostructure exhibits low overpotential (293 ​mV@10 ​mA ​cm-2), and robust stability (decay 12 ​mV after 5000 CV cycles, 97.4% of initial current after 100 ​h chronoamperometric) for the OER process, exceeding many advanced metal phosphide electrocatalysts. This work provides a novel tactic to design low-cost, simple, and highly efficient OER electrocatalysts.

References

[1]

T. Zhu, S.H. Liu, B. Huang, Q. Shao, M. Wang, F. Li, X.Y. Tan, Y.C. Pi, S.-C. Weng, B.L. Huang, Z.W. Hu, J.B. Wu, Y. Qian, X.Q. Huang, Energy Environ. Sci. 14 (2021) 3194–3202.

[2]

G. Wan, J.W. Freeland, J. Kloppenburg, G. Petretto, J.N. Nelson, D.-Y. Kuo, C.-J. Sun, J.G. Wen, J.T. Diulus, G.S. Herman, Y.Q. Dong, R.H. Kou, J.Y. Sun, S. Chen, K.M. Shen, D.G. Schlom, G.-M. Rignanese, G. Hautier, D.D. Fong, Z.X. Feng, H. Zhou, J. Suntivich, Sci. Adv. 7 (2021), eabc7323.

[3]

G.B. Liu, Y.S. Xu, T. Yang, L.H. Jiang, Nano Mater Sci (2022), https://doi.org/10.1016/j.nanoms.2020.12.003.

[4]

T.G. Yun, Y. Heo, H.B. Bae, S.-Y. Chung, Nat. Commun. 12 (2021) 824.

[5]
B. Shang, L. Jiao, Q. l. Bao, C.M. Li, X.Q. Cui, Nano Mater Sci 1 (2019) 231, 245233.
[6]

P.P. Lopes, D.Y. Chung, X. Rui, H. Zheng, H.Y. He, P.F.B.D. Martins, D. Strmcnik, V.R. Stamenkovic, P. Zapol, J.F. Mitchell, R.F. Klie, N.M. Markovic, J. Am. Chem. Soc. 7 (2021) 2741–2750.

[7]

N. You, S. Cao, M.Q. Huang, X.M. Fan, K. Shi, H.J. Huang, Z.X. Chen, Z.H. Yang, W.X. Zhang, Nano Mater Sci (2022), https://doi.org/10.1016/j.nanoms.2021.05.004.

[8]

Y.L. Zhang, N. Li, Z.Y. Zhang, S. Li, M.Y. Cui, L. Ma, H. Zhou, D. Su, S. Zhang, J. Am. Chem. Soc. 18 (2020) 8490–8497.

[9]

Z.H. Pu, J.H. Zhao, I.S. Amiinu, W.Q. Li, M. Wang, D.P. He, S.C. Mu, Energy Environ. Sci. 12 (2019) 952–957.

[10]

L.B. Wu, L. Yu, F.H. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z.F. Ren, Adv. Funct. Mater. 31 (2021) 2006484.

[11]

X.J. Zeng, J.L. Shui, X.F. Liu, Q.T. Liu, Y.C. Li, J.X. Shang, L.R. Zheng, R.H. Y, Adv. Energy Mater. 8 (2018) 1701345.

[12]

D.-Y. Kuo, H. Paik, J. Kloppenburg, B. Faeth, K.M. Shen, D.G. Schlom, G. Hautier, J. Suntivich, J. Am. Chem. Soc. 140 (2018) 17597–17605.

[13]

P. Liu, B. Chen, C.W. Liang, W.T. Yao, Y.Z. Cui, S.Y. Hu, P.C. Zou, H. Zhang, H.J. Fan, C. Yang, Adv. Mater. 33 (2021) 2007377.

[14]

J.Q. Chi, X.J. Zeng, X. Shang, B. Dong, Y.M. Chai, C.G. Liu, M. Marin, Y.D. Yin, Adv. Funct. Mater. 29 (2019) 1901790.

[15]

X.J. Zeng, M.J. Jang, S.M. Choi, H.-S. Cho, C.-H. Kim, N.V. Myung, Y.D. Yin, Mater. Chem. Front. 4 (2020) 2307–2313.

[16]

L.Y. Chen, Y.Y. Zhang, H.F. Wang, Y.X. Wang, D.Z. Li, C.Y. Duan, Nanoscale 10 (2018) 21019–21024.

[17]

J. Yang, D.H. Guo, S.L. Zhao, Y. Lin, R. Yang, D.D. Xu, N.E. Shi, X.S. Zhang, L.Z. Lu, Y.-Q. Lan, J.C. Bao, M. Han, Small 15 (2019) 1804546.

[18]

Y.H. Liu, N. Ran, R.Y. Ge, J.J. Liu, W.X. Li, Y.Y. Chen, L.Y. Feng, R.C. Che, Chem. Eng. J. 425 (2021) 131642.

[19]

Z.B. Liang, T.J. Qiu, S. Gao, R.Q. Zhong, R.Q. Zou, Adv. Energy Mater. (2021) 2003410.

[20]

Y.Q. Tang, X.Y. Fang, X. Zhang, G. Fernandes, Y. Yan, D.P. Yan, X. Xiang, J. He, ACS Appl. Mater. Interfaces 42 (2017) 36762–36771.

[21]

A. Ray, S. Sultana, L. Paramanik, K.M. Parida, J. Mater. Chem. 8 (2020) 19196–19245.

[22]

S.N. Sun, H.Y. Li, Z.C.J. Xu, Joule 2 (2018) 1024–1027.

[23]

X.J. Zeng, S.M. Choi, Y.C. Bai, M.J. Jang, R.H. Yu, H.-S. Cho, C.-H. Kim, N.V. Myung, Y.D. Yin, ACS Appl. Energy Mater. 3 (2020) 146–151.

[24]

X.J. Zeng, Y.C. Bai, S.M. Choi, L.J. Tong, R.M. Aleisa, Z.W. Li, X.F. Liu, R.H. Yu, N.V. Myung, Y.D. Yin, Mater. Today Nano 6 (2019) 100038.

[25]

Y.Y. Song, J.L. Cheng, J. Liu, Q. Ye, X. Gao, J.J. Lu, Y.L. Cheng, Appl. Catal., B 298 (2021) 120488.

[26]

L.X. Wang, E.J. Guan, Y.Q. Wang, L. Wang, Z.M. Gong, Y. Cui, X.J. Meng, B.C. Gates, F.-S. Xiao, Nat. Commun. 11 (2020) 1033.

[27]

X.H. Song, T. Ding, L. Yao, M. Lin, R.L.S. Tan, C.C. Liu, K. Sokol, L. Yu, X.W. Lou, H.Y. Chen, Small 11 (2015) 4351–4365.

[28]

L.J. Zhang, F.G. Wang, J.Y. Zhu, B.L. Han, W.Q. Fan, L. Zhao, W.J. Cai, Z.C. Li, L.L. Xu, H. Yu, W.D. Shi, Fuel 256 (2019) 115954.

[29]

J.S. Kim, I. Park, E.-S. Jeong, K. Jin, W.M. Seong, G. Yoon, H. Kim, B. Kim, K.T. Nam, K. Kang, Adv. Mater. 29 (2017) 1606893.

[30]

C. Qiu, L.H. Ai, J. Jiang, ACS Sustain. Chem. Eng. 6 (2018) 4492–4498.

[31]

C.Y. Wang, X.J. Zeng, G.M. Jiang, M. Chen, L.Y. Zhu, R.H. Yu, Electrochim. Acta 283 (2018) 190–196.

[32]

D. Zhou, L.-Z. Fan, J. Mater. Chem. 6 (2018) 2139–2147.

[33]

X.C. Ren, Z.G. Ren, Q.W. Li, W. Wen, X.F. Li, Y. Chen, L. Xie, L. Zhang, D.M. Zhu, B. Gao, P.K. Chu, K.F. Huo, Adv. Energy Mater. 9 (2019) 1900091.

[34]

D. Yang, J.X. Zhu, X.H. Rui, H.T. Tan, R. Cai, H.E. Hoster, D.Y.W. Yu, H.H. Hng, Q.Y. Yan, ACS Appl. Mater. Interfaces 5 (2013) 1093–1099.

[35]

A. Dane, U.K. Demirok, A. Aydinli, S. Suzer, J. Phys. Chem. B 110 (2006) 1137–1140.

[36]

Z. Li, W.H. Niu, Z.Z. Yang, A. Kara, Q. Wang, M.Y. Wang, M. Gu, Z.X. Feng, Y.G. Du, Y. Yang, Energy Environ. Sci. 13 (2020) 3110–3118.

[37]

S. Yang, G.B. Chen, A.G. Ricciardulli, P.P. Zhang, Z. Zhang, H.H. Shi, J. Ma, J. Zhang, P.W.M. Blom, X.L. Feng, Angew. Chem. Int. Ed. 59 (2020) 465–470.

[38]

E. Cao, Z.M. Chen, H. Wu, P. Yu, Y. Wang, F. Xiao, S. Chen, S.C. Du, Y. Xie, Y.Q. Wu, Z.Y. Ren, Angew. Chem. Int. Ed. 59 (2020) 4154–4160.

[39]

X.J. Zeng, Y. Zhao, X.D. Hu, G.D. Stucky, M. Moskovits, Small Struct. 2 (2021) 2000138.

[40]

X.J. Zeng, B. Yang, X.P. Li, R.H. Yu, Mater. Des. 101 (2016) 35–43.

[41]

S.L. Jiao, X.W. Fu, S.Y. Wang, Y. Zhao, Energy Environ. Sci. 14 (2021) 1722–1770.

[42]

J.C. Gao, J.M. Wang, L.J. Zhou, X.Y. Cai, D. Zhan, M.Z. Hou, L.F. Lai, ACS Appl. Mater. Interfaces 11 (2019) 10364–10372.

Nano Materials Science
Pages 393-399
Cite this article:
Zeng X, Zhang H, Zhang X, et al. Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction. Nano Materials Science, 2022, 4(4): 393-399. https://doi.org/10.1016/j.nanoms.2022.03.002

346

Views

3

Downloads

24

Crossref

22

Web of Science

27

Scopus

2

CSCD

Altmetrics

Received: 05 January 2022
Accepted: 17 February 2022
Published: 14 April 2022
© 2022 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return