AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The role of maternal immune activation in immunological and neurological pathogenesis of autism

CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250012, Shangdong, China
Show Author Information

Abstract

The growing body of evidence associates infections during pregnancy and other inflammatory insults with developing neurodevelopmental and neurodevelopmental disorders in children, especially autism spectrum disorder. We review the specific roles that maternal immune activation (MIA) plays in the pathogenesis of autism, the critical cytokines involved, epigenetic factors, maternal antibodies and gender bias, and how MIA affects fetal neurodevelopment in the immune and neurological pathways. A comprehensive understanding of the profound impact of MIA on fetal neurodevelopment is vital for developing diagnostic criteria and medical measures for high-risk maternity and the development of treatments for multiple offspring neurodevelopmental disorders caused by maternal inflammation.

References

1

Mattila ML, Kielinen M, Linna SL, et al. Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry. 2011;50(6): 583-592. e11.

2

Zablotsky B, Black LI, Maenner MJ, et al. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 national health interview survey. Natl Health Stat Report. 2015;(87): 1-20.

3
Blumberg SJ, Bramlett MD, Kogan MD, et al. Changes in prevalence of parentreported autism spectrum disorder in school-aged US children: 2007 to 2011-2012. Natl Health Stat Report. 2013;(65): 1-11, 1pfollowing11.
4

Zablotsky B, Black LI, Blumberg SJ. Estimated prevalence of children with diagnosed developmental disabilities in the United States, 2014-2016. NCHS Data Brief. 2017;(291): 1-8.

5

Jobski K, Höfer J, Hoffmann F, et al. Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand. 2017;135(1): 8-28.

6

Volk HE, Kerin T, Lurmann F, et al. Autism spectrum disorder: interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology. 2014;25(1): 44-47.

7

Workman AD, Charvet CJ, Clancy B, et al. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17): 7368-7383.

8

Atladóttir HO, Thorsen P, Østergaard L, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40(12): 1423-1430.

9

Zerbo O, Iosif AM, Walker C, et al. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord. 2013;43(1): 25-33.

10

Patel S, Masi A, Dale RC, et al. Social impairments in autism spectrum disorder are related to maternal immune history profile. Mol Psychiatry. 2018;23(8): 1794-1797.

11

Haddad FL, Patel SV, Schmid S. Maternal immune activation by poly I:C as a preclinical model for neurodevelopmental disorders: a focus on autism and schizophrenia. Neurosci Biobehav Rev. 2020;113: 546-567.

12

Henriksen MG, Nordgaard J, Jansson LB. Genetics of schizophrenia: overview of methods, findings and limitations. Front Hum Neurosci. 2017;11: 322.

13

Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3): 261-280.

14

Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353(6301): 772-777.

15

Ormstad H, Bryn V, Saugstad OD, et al. Role of the immune system in autism spectrum disorders (ASD). CNS Neurol Disord Drug Targets. 2018;17(7): 489-495.

16

Rudolph MD, Graham AM, Feczko E, et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci. 2018;21(5): 765-772.

17

Shin Yim Y, Park A, Berrios J, et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 2017;549(7673): 482-487.

18

Haida O, Al Sagheer T, Balbous A, et al. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl Psychiatry. 2019;9: 124.

19

Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 2010;24(6): 881-897.

20

Meyer U. Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry. 2014;75(4): 307-315.

21

Reisinger S, Khan D, Kong EY, et al. The Poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther. 2015;149: 213-226.

22

Pendyala G, Chou S, Jung Y, et al. Maternal immune activation causes behavioral impairments and altered cerebellar cytokine and synaptic protein expression. Neuropsychopharmacology. 2017;42(7): 1435-1446.

23

Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11): 643-660.

24

Masi A, Quintana DS, Glozier N, et al. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry. 2015;20(4): 440-446.

25

Gupta S, Ellis SE, Ashar FN, et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 2014;5: 5748.

26

Hashim H, Abdelrahman H, Mohammed D, et al. Association between plasma levels of transforming growth factor-β1, IL-23 and IL-17 and the severity of autism in Egyptian children. Res Autism Spectr Disord. 2013;7(1): 199-204.

27

Ashwood P, Krakowiak P, Hertz-Picciotto I, et al. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol. 2011;232(1/2): 196-199.

28

Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation. 2012;19(2): 121-130.

29

Ricci S, Businaro R, Ippoliti F, et al. Altered cytokine and BDNF levels in autism spectrum disorder. Neurotox Res. 2013;24(4): 491-501.

30

Okada K, Hashimoto K, Iwata Y, et al. Decreased serum levels of transforming growth factor-β1 in patients with autism. Prog Neuro Psychopharmacol Biol Psychiatry. 2007;31(1): 187-190.

31

Molloy CA, Morrow AL, Meinzen-Derr J, et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol. 2006;172(1/2): 198-205.

32

Rose DR, Careaga M, van de Water J, et al. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun. 2017;63: 60-70.

33

Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276): 933-939.

34

Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol Autism. 2011;2: 13.

35

Racicot K, Kwon JY, Aldo P, et al. Understanding the complexity of the immune system during pregnancy. Am J Reprod Immunol. 2014;72(2): 107-116.

36

Fu B, Wei H. Decidual natural killer cells and the immune microenvironment at the maternal-fetal interface. Sci China Life Sci. 2016;59(12): 1224-1231.

37

León-Juárez M, Martínez-Castillo M, González-García LD, et al. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis. 2017;75(7): ftx093.

38

Billingham RE, Brent L, Medawar PB. 'Actively acquired tolerance' of foreign cells. Nature. 1953;172(4379): 603-606.

39

Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014;124(5): 1872-1879.

40

Ruocco MG, Chaouat G, Florez L, et al. Regulatory T-cells in pregnancy: historical perspective, state of the art, and burning questions. Front Immunol. 2014;5: 389.

41

Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 2017;42(1): 284-298.

42

Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci. 2009;3: 14.

43

Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33(3): 267-286.

44

Croonenberghs J, Bosmans E, Deboutte D, et al. Activation of the inflammatory response system in autism. Neuropsychobiology. 2002;45(1): 1-6.

45

Brigida AL, Schultz S, Cascone M, et al. Endocannabinod signal dysregulation in autism spectrum disorders: a correlation link between inflammatory state and neuro-immune alterations. Int J Mol Sci. 2017;18(7): E1425.

46

Croen LA, Braunschweig D, Haapanen L, et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry. 2008;64(7): 583-588.

47

Ravaccia D, Ghafourian T. Critical role of the maternal immune system in the pathogenesis of autism spectrum disorder. Biomedicines. 2020;8(12): E557.

48

Jones KL, Croen LA, Yoshida CK, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22(2): 273-279.

49

Irwin JL, Yeates AJ, Mulhern MS, et al. Maternal gestational immune response and autism spectrum disorder phenotypes at 7 years of age in the Seychelles child development study. Mol Neurobiol. 2019;56(7): 5000-5008.

50

Chamera K, Kotarska K, Szuster-Głuszczak M, et al. The prenatal challenge with lipopolysaccharide and polyinosinic: polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J Neuroinflammation. 2020;17(1): 247.

51

Ding S, Hu Y, Luo B, et al. Age-related changes in neuroinflammation and prepulse inhibition in offspring of rats treated with Poly I:C in early gestation. Behav Brain Funct. 2019;15(1): 3.

52

Brocker C, Thompson D, Matsumoto A, et al. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics. 2010;5(1): 30-55.

53

Ashwood P, Krakowiak P, Hertz-Picciotto I, et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1): 40-45.

54

Inga Jácome MC, Morales Chacòn LM, Vera Cuesta H, et al. Peripheral inflammatory markers contributing to comorbidities in autism. Behav Sci: Basel. 2016;6(4): E29.

55

Xie J, Huang L, Li XH, et al. Immunological cytokine profiling identifies TNF-α as a key molecule dysregulated in autistic children. Oncotarget. 2017;8(47): 82390-82398.

56

Hu CC, Xu X, Xiong GL, et al. Alterations in plasma cytokine levels in Chinese children with autism spectrum disorder. Autism Res. 2018;11(7): 989-999.

57

Eftekharian MM, Ghafouri-Fard S, Noroozi R, et al. Cytokine profile in autistic patients. Cytokine. 2018;108: 120-126.

58

Cristiano C, Lama A, Lembo F, et al. Interplay between peripheral and central inflammation in autism spectrum disorders: possible nutritional and therapeutic strategies. Front Physiol. 2018;9: 184.

59

Wei H, Alberts I, Li X. Brain IL-6 and autism. Neuroscience. 2013;252: 320-325.

60

Wei H, Chadman KK, McCloskey DP, et al. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta. 2012;1822(6): 831-842.

61

Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1): 67-81.

62

Alabdali A, Al-Ayadhi L, El-Ansary A. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J Neuroinflammation. 2014;11: 4.

63

Szalecki M, Malinowska A, Prokop-Piotrkowska M, et al. Interactions between the growth hormone and cytokines - a review. Adv Med Sci. 2018;63(2): 285-289.

64

Jyonouchi H, Geng L, Davidow AL. Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: an inflammatory subtype? J Neuroinflammation. 2014;11: 187.

65

Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009;64(1): 61-78.

66

Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8): 469-486.

67

Garay PA, Hsiao EY, Patterson PH, et al. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun. 2013;31: 54-68.

68

Glynn MW, Elmer BM, Garay PA, et al. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat Neurosci. 2011;14(4): 442-451.

69

Bulik-Sullivan BK, Loh PR, Finucane HK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3): 291-295.

70

Coiro P, Padmashri R, Suresh A, et al. Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav Immun. 2015;50: 249-258.

71

Elmer BM, Estes ML, Barrow SL, et al. MHCI requires MEF2 transcription factors to negatively regulate synapse density during development and in disease. J Neurosci. 2013;33(34): 13791-13804.

72

Al-Hakbany M, Awadallah S, Al-Ayadhi L. The relationship of HLA class Ⅰ and Ⅱ alleles and haplotypes with autism: a case control study. Autism Res Treat. 2014;2014: 242048.

73

Bennabi M, Gaman A, Delorme R, et al. HLA-class Ⅱ haplotypes and autism spectrum disorders. Sci Rep. 2018;8(1): 7639.

74

Harville T, Rhodes-Clark B, Bennuri SC, et al. Inheritance of HLA-Cw7 associated with autism spectrum disorder (ASD). Front Psychiatry. 2019;10: 612.

75

Torres AR, Westover JB, Rosenspire AJ. HLA immune function genes in autism. Autism Res Treat. 2012;2012: 959073.

76

Huh GS, Boulanger LM, Du H, et al. Functional requirement for class Ⅰ MHC in CNS development and plasticity. Science. 2000;290(5499): 2155-2159.

77

Drescher HK, Bartsch LM, Weiskirchen S, et al. Intrahepatic TH17/TReg cells in homeostasis and disease-it's all about the balance. Front Pharmacol. 2020;11: 588436.

78

Grigorenko EL, Han SS, Yrigollen CM, et al. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics. 2008;122(2): e438-e445.

79

Robinson-Agramonte MLA, Noris García E, Fraga Guerra J, et al. Immune dysregulation in autism spectrum disorder: what do we know about it? Int J Mol Sci. 2022;23(6): 3033.

80

Needleman LA, McAllister AK. The major histocompatibility complex and autism spectrum disorder. Dev Neurobiol. 2012;72(10): 1288-1301.

81

Voineagu I, Eapen V. Converging pathways in autism spectrum disorders: interplay between synaptic dysfunction and immune responses. Front Hum Neurosci. 2013;7: 738.

82

Ohja K, Gozal E, Fahnestock M, et al. Neuroimmunologic and neurotrophic interactions in autism spectrum disorders: relationship to neuroinflammation. Neuromolecular Med. 2018;20(2): 161-173.

83

Saghazadeh A, Rezaei N. Brain-derived neurotrophic factor levels in autism: a systematic review and meta-analysis. J Autism Dev Disord. 2017;47(4): 1018-1029.

84

Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol. 2015;131: 65-86.

85

Gentile I, Zappulo E, Militerni R, et al. Etiopathogenesis of autism spectrum disorders: fitting the pieces of the puzzle together. Med Hypotheses. 2013;81(1): 26-35.

86

Lu B, Wang KH, Nose A. Molecular mechanisms underlying neural circuit formation. Curr Opin Neurobiol. 2009;19(2): 162-167.

87

Wetmore C, Ernfors P, Persson H, et al. Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp Neurol. 1990;109(2): 141-152.

88

Nickl-Jockschat T, Michel TM. The role of neurotrophic factors in autism. Mol Psychiatry. 2011;16(5): 478-490.

89

Morichi S, Yamanaka G, Ishida Y, et al. Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy. Neurochem Res. 2014;39(11): 2143-2149.

90

Ghafouri-Fard S, Namvar A, Arsang-Jang S, et al. Expression analysis of BDNF, BACE1, and their natural occurring antisenses in autistic patients. J Mol Neurosci. 2020;70(2): 194-200.

91

Liu SH, Shi XJ, Fan FC, et al. Peripheral blood neurotrophic factor levels in children with autism spectrum disorder: a meta-analysis. Sci Rep. 2021;11: 15.

92

Barbosa AG, Pratesi R, Paz GSC, et al. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep. 2020;10: 17348.

93

Qin XY, Feng JC, Cao C, et al. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: a systematic review and meta-analysis. JAMA Pediatr. 2016;170(11): 1079-1086.

94

Zheng Z, Zhang L, Zhu TT, et al. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci Rep. 2016;6: 31241.

95

Armeanu R, Mokkonen M, Crespi B. Meta-analysis of BDNF levels in autism. Cell Mol Neurobiol. 2017;37(5): 949-954.

96

Fernandes BS, Steiner J, Berk M, et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry. 2015;20(9): 1108-1119.

97

Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9): 1089-1093.

98

Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008;64(6): 527-532.

99

Lang UE, Hellweg R, Gallinat J. BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology. 2004;29(4): 795-798.

100

Castrén ML, Castrén E. BDNF in fragile X syndrome. Neuropharmacology. 2014;76: 729-736.

101

Wink LK, Fitzpatrick S, Shaffer R, et al. The neurobehavioral and molecular phenotype of angelman syndrome. Am J Med Genet A. 2015;167A(11): 2623-2628.

102

Nelson KB, Grether JK, Croen LA, et al. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol. 2001;49(5): 597-606.

103

Bryn V, Halvorsen B, Ueland T, et al. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur J Paediatr Neurol. 2015;19(4): 411-414.

104

de los Angeles Robinson-Agramonte M, Michalski B, Vidal-Martinez B, et al. BDNF, proBDNF and IGF-1 serum levels in naive and medicated subjects with autism. Sci Rep. 2022;12: 13768.

105

Garcia KLP, Yu GH, Nicolini C, et al. Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J Neuropathol Exp Neurol. 2012;71(4): 289-297.

106

Smith SE, Li J, Garbett K, et al. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40): 10695-10702.

107

Zaretsky MV, Alexander JM, Byrd W, et al. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103(3): 546-550.

108

Hodge DR, Cho E, Copeland TD, et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics. 2007;4(6): 387-398.

109

Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci. 2016;10: 329.

110

Zijlstra GJ, Ten Hacken NH, Hoffmann RF, et al. Interleukin-17A induces glucocorticoid insensitivity in human bronchial epithelial cells. Eur Respir J. 2012;39(2): 439-445.

111

Kalkman HO, Feuerbach D. Microglia M2A polarization as potential link between food allergy and autism spectrum disorders. Pharmaceuticals (Basel). 2017;10(4): E95.

112

Siniscalco D, Bradstreet JJ, Cirillo A, et al. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation. 2014;11: 78.

113

Siniscalco D, Schultz S, Brigida AL, et al. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel). 2018;11(2): E56.

114

Wendeln AC, Degenhardt K, Kaurani L, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556(7701): 332-338.

115

Kowal C, Athanassiou A, Chen H, et al. Maternal antibodies and developing blood-brain barrier. Immunol Res. 2015;63(1/2/3): 18-25.

116

Mazón-Cabrera R, Vandormael P, Somers V. Antigenic targets of patient and maternal autoantibodies in autism spectrum disorder. Front Immunol. 2019;10: 1474.

117

Palmeira P, Quinello C, Silveira-Lessa AL, et al. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012: 985646.

118

Yousef Yengej FA, van Royen-Kerkhof A, Derksen RHWM, et al. The development of offspring from mothers with systemic lupus erythematosus. A systematic review. Autoimmun Rev. 2017;16(7): 701-711.

119

Zhu Z, Tang S, Deng X, et al. Maternal systemic lupus erythematosus, rheumatoid arthritis, and risk for autism spectrum disorders in offspring: a meta-analysis. J Autism Dev Disord. 2020;50(8): 2852-2859.

120

Mader S, Brimberg L, Vo A, et al. In utero exposure to maternal anti-aquaporin-4 antibodies alters brain vasculature and neural dynamics in male mouse offspring. Sci Transl Med. 2022;14(641): eabe9726.

121

Coutinho E, Menassa DA, Jacobson L, et al. Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero. Acta Neuropathol. 2017;134(4): 567-583.

122

Jones KL, van de Water J. Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry. 2019;24(2): 252-265.

123

Gata-Garcia A, Diamond B. Maternal antibody and ASD: clinical data and animal models. Front Immunol. 2019;10: 1129.

124

Marks K, Vincent A, Coutinho E. Maternal-autoantibody-related (MAR) autism: identifying neuronal antigens and approaching prospects for intervention. J Clin Med. 2020;9(8): E2564.

125

Gordon A, Salomon D, Barak N, et al. Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems. Mol Cell Neurosci. 2016;70: 42-53.

126

Irani SR, Alexander S, Waters P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain. 2010;133(9): 2734-2748.

127

Bagnall-Moreau C, Huerta PT, Comoletti D, et al. In utero exposure to endogenous maternal polyclonal anti-Caspr2 antibody leads to behavioral abnormalities resembling autism spectrum disorder in male mice. Sci Rep. 2020;10(1): 14446.

128

Brimberg L, Mader S, Jeganathan V, et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry. 2016;21(12): 1663-1671.

129

Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007;7(1): 39-47.

130

Lee EJ, Choi SY, Kim E. NMDA receptor dysfunction in autism spectrum disorders. Curr Opin Pharmacol. 2015;20: 8-13.

131

Won H, Lee HR, Gee HY, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486(7402): 261-265.

132

Yoo YE, Lee S, Kim W, et al. Early chronic memantine treatment-induced transcriptomic changes in wild-type and Shank2-mutant mice. Front Mol Neurosci. 2021;14: 712576.

133

Rahman T, Zavitsanou K, Purves-Tyson T, et al. Effects of immune activation during early or late gestation on N-methyl-D-aspartate receptor measures in adult rat offspring. Front Psychiatry. 2017;8: 77.

134

Urbano M, Okwara L, Manser P, et al. A trial of D-cycloserine to treat stereotypies in older adolescents and young adults with autism spectrum disorder. Clin Neuropharmacol. 2014;37(3): 69-72.

135

Jurek B, Chayka M, Kreye J, et al. Human gestational N-methyl-d-aspartate receptor autoantibodies impair neonatal murine brain function. Ann Neurol. 2019;86(5): 656-670.

136

Vandebroek A, Yasui M. Regulation of AQP4 in the central nervous system. Int J Mol Sci. 2020;21(5): E1603.

137

Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells. 2019;8(2): E90.

138

Kitchen P, Salman MM, Halsey AM, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell. 2020;181(4): 784-799. e19.

139

Bruce MR, Jones KL, Vernon AC, et al. Sexually dimorphic neuroanatomical differences relate to ASD-relevant behavioral outcomes in a maternal autoantibody mouse model. Mol Psychiatry. 2021;26(12): 7530-7537.

140

Xuan IC, Hampson DR. Gender-dependent effects of maternal immune activation on the behavior of mouse offspring. PLoS One. 2014;9(8): e104433.

141

Foley KA, MacFabe DF, Vaz A, et al. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int J Dev Neurosci. 2014;39: 68-78.

142

Schaafsma SM, Gagnidze K, Reyes A, et al. Sex-specific gene-environment interactions underlying ASD-like behaviors. PNAS. 2017;114(6): 1383-1388.

143

Schwartzer JJ, Careaga M, Onore CE, et al. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry. 2013;3(3): e240.

144

Naviaux RK, Zolkipli Z, Wang L, et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One. 2013;8(3): e57380.

145

Al Sagheer T, Haida O, Balbous A, et al. Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. Int J Neuropsychopharmacol. 2018;21(9): 871-882.

146

Becker KG. Male gender bias in autism and pediatric autoimmunity. Autism Res. 2012;5(2): 77-83.

147

Pasqualini C, Olivier V, Guibert B, et al. Acute stimulatory effect of estradiol on striatal dopamine synthesis. J Neurochem. 1995;65(4): 1651-1657.

148

McDermott JL, Liu BJ, Dluzent DE. Sex differences and effects of estrogen on dopamine and DOPAC release from the striatum of male and female CD-1 mice. Exp Neurol. 1994;125(2): 306-311.

149

Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci. 2004;7(10): 1034-1039.

150

Sato T, Matsumoto T, Kawano H, et al. Brain masculinization requires androgen receptor function. Proc Natl Acad Sci USA. 2004;101(6): 1673-1678.

151

Baron-Cohen S, Lombardo MV, Auyeung B, et al. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011;9(6): e1001081.

152

Hines M. Early androgen influences on human neural and behavioural development. Early Hum Dev. 2008;84(12): 805-807.

153

Auyeung B, Baron-Cohen S, Ashwin E, et al. Fetal testosterone and autistic traits. Br J Psychol. 2009;100(pt 1): 1-22.

154

Fan X, Warner M, Gustafsson JA. Estrogen receptor β expression in the embryonic brain regulates development of calretinin-immunoreactive GABAergic interneurons. Proc Natl Acad Sci USA. 2006;103(51): 19338-19343.

155

Saijo K, Collier JG, Li AC, et al. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell. 2011;145(4): 584-595.

156

Arnold ML, Saijo K. Estrogen receptor β as a candidate regulator of sex differences in the maternal immune activation model of ASD. Front Mol Neurosci. 2021;14: 717411.

157

McCarthy MM, Arnold AP, Ball GF, et al. Sex differences in the brain: the not so inconvenient truth. J Neurosci. 2012;32(7): 2241-2247.

158

Ngun TC, Ghahramani N, Sánchez FJ, et al. The genetics of sex differences in brain and behavior. Front Neuroendocrinol. 2011;32(2): 227-246.

159

Beyer C, Eusterschulte B, Pilgrim C, et al. Sex steroids do not alter sex differences in tyrosine hydroxylase activity of dopaminergic neurons in vitro. Cell Tissue Res. 1992;270(3): 547-552.

160

Dewing P, Shi T, Horvath S, et al. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Mol Brain Res. 2003;118(1/2): 82-90.

161

Beyer C, Pilgrim C, Reisert I. Dopamine content and metabolism in mesencephalic and diencephalic cell cultures: sex differences and effects of sex steroids. J Neurosci. 1991;11(5): 1325-1333.

162

LYON MF. Gene action in the X-chromosome of the mouse (mus Musculus L.). Nature. 1961;190(4773): 372-373.

163

Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434(7031): 400-404.

164

Xu J, Deng X, Watkins R, et al. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci. 2008;28(17): 4521-4527.

165

Xu J, Taya S, Kaibuchi K, et al. Sexually dimorphic expression of Usp9x is related to sex chromosome complement in adult mouse brain. Eur J Neurosci. 2005;21(11): 3017-3022.

166

Schaafsma SM, Pfaff DW. Etiologies underlying sex differences in Autism Spectrum Disorders. Front Neuroendocrinol. 2014;35(3): 255-271.

167

Russell HF, Wallis D, Mazzocco MMM, et al. Increased prevalence of ADHD in Turner syndrome with no evidence of imprinting effects. J Pediatr Psychol. 2006;31(9): 945-955.

168

Skuse DH. Imprinting, the X-chromosome, and the male brain: explaining sex differences in the liability to autism. Pediatr Res. 2000;47(1): 9.

169

Prior TI, Chue PS, Tibbo P. Investigation of Turner syndrome in schizophrenia. Am J Med Genet. 2000;96(3): 373-378.

170

Zhao M, Kong L, Qu H. A systems biology approach to identify intelligence quotient score-related genomic regions and pathways relevant to potential therapeutic treatments. Sci Rep. 2014;4: 4176.

171

Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol. 2015;65: 139-150.

172

Koopman P, Münsterberg A, Capel B, et al. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature. 1990;348(6300): 450-452.

173

Lahr G, Maxson SC, Mayer A, et al. Transcription of the Y chromosomal gene, Sry, in adult mouse brain. Mol Brain Res. 1995;33(1): 179-182.

174

Mayer A, Lahr G, Swaab DF, et al. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics. 1998;1(4): 281-288.

175

Czech DP, Lee J, Sim H, et al. The human testis-determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism. J Neurochem. 2012;122(2): 260-271.

176

Wu JB, Chen K, Li Y, et al. Regulation of monoamine oxidase A by the SRY gene on the Y chromosome. FASEB J. 2009;23(11): 4029-4038.

177

Ross JL, Tartaglia N, Merry DE, et al. Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features. Genes Brain Behav. 2015;14(2): 137-144.

Journal of Neurorestoratology
Article number: 100030
Cite this article:
Liu K, Huang Y, Zhu Y, et al. The role of maternal immune activation in immunological and neurological pathogenesis of autism. Journal of Neurorestoratology, 2023, 11(1): 100030. https://doi.org/10.1016/j.jnrt.2022.100030

773

Views

3

Crossref

3

Web of Science

2

Scopus

Altmetrics

Received: 12 June 2022
Revised: 20 September 2022
Accepted: 26 October 2022
Published: 15 November 2022
© 2022 The Author(s). Published by Elsevier Ltd on behalf of Tsinghua University Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return