AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Chronic neuroinflammation regulates cAMP response element-binding protein in the formation of drug-resistant epilepsy by activating glial cells

Clinical College of Guizhou Medical University, Guiyang 550004, Guizhou, China
Affiliated Hospital/Clinical College of Guizhou Medical University, Guiyang 550004, Guizhou, China
Show Author Information

Abstract

The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is associated with multiple signaling pathways. The signaling pathways leading to epilepsy have been extensively studied and include the Ca2+/CaMKiV/CREB pathway, the MAPK/CREB pathway, and the PI3K/Akt/CREB pathway. The regulation of transcription in cells requires CREB phosphorylation and dephosphorylation. Based on a review of the relevant literature, we found that increasing evidence demonstrates that drug-resistant epilepsy might be closely related to the upregulation and phosphorylation of CREB. Previous studies have shown that the mechanisms of epileptogenesis are associated with the over-excitability and sudden synchronous discharge of neurons. In turn, we have learned that inflammation produces proinflammatory factors that damage the blood–brain barrier and activate microglia (MG) and astrocytes (AS). Activated MG and AS not only play neuroprotective roles, but also cause neuroinflammation, which in turn damages nerve cells through CREB-related signaling pathways, leading to reduced effectiveness of antiepileptic drugs and, ultimately, to drug resistance in patients with epilepsy. Therefore, we hypothesized that the formation of drug-resistant epilepsy is related to the regulation of CREB activation or phosphorylation in glial cells activated by chronic inflammation.

References

1.

Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res. 2018, 139: 73-79.

2.
RoyPLRonquilloLHLadinoLDRisk factors associated with drug resistant focal epilepsy in adults: a case control studySeizure2019734650

Roy PL, Ronquillo LH, Ladino LD, et al. Risk factors associated with drug resistant focal epilepsy in adults: a case control study. Seizure. 2019, 73: 46-50.

10.1016/j.seizure.2019.10.020
3.
KalilaniLSunXZPelgrimsBThe epidemiology of drug-resistant epilepsy: a systematic review and meta-analysisEpilepsia201859122179219310.1111/epi.14596

Kalilani L, Sun XZ, Pelgrims B, et al. The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia. 2018, 59(12): 2179-2193.

4.
DeyAKangXQiuJGAnti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedsideTrends Pharmacol. Sci.2016376463484

Dey A, Kang X, Qiu JG, et al. Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol. Sci. 2016, 37(6): 463-484.

10.1016/j.tips.2016.03.001
5.
GeisCPlanagumàJCarreñoMAutoimmune seizures and epilepsyJ. Clin. Invest.2019129392694010.1172/jci125178

Geis C, Planagumà J, Carreño M, et al. Autoimmune seizures and epilepsy. J. Clin. Invest. 2019, 129(3): 926-940.

6.
VolmeringENiehusmannPPeevaVNeuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsyActa Neuropathol2016132227728810.1007/s00401-016-1561-1

Volmering E, Niehusmann P, Peeva V, et al. Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy. Acta Neuropathol. 2016, 132(2): 277-288.

7.
ClarksonBDSLaFrance-CoreyRGKahoudRJFunctional deficiency in endogenous interleukin-1 receptor antagonist in patients with febrile infection-related epilepsy syndromeAnn. Neurol.201985452653710.1002/ana.25439

Clarkson BDS, LaFrance-Corey RG, Kahoud RJ, et al. Functional deficiency in endogenous interleukin-1 receptor antagonist in patients with febrile infection-related epilepsy syndrome. Ann. Neurol. 2019, 85(4): 526-537.

8.
MukherjeeSArisiGMMimsKNeuroinflammatory mechanisms of post-traumatic epilepsyJ. Neuroinflammation2020171193

Mukherjee S, Arisi GM, Mims K, et al. Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation. 2020, 17(1): 193.

10.1186/s12974-020-01854-w
9.
ZhuXJYaoYYYangJRCOX-2-PGE 2 signaling pathway contributes to hippocampal neuronal injury and cognitive impairment in PTZ-kindled epilepsy miceInt. Immunopharm.202087106801

Zhu XJ, Yao YY, Yang JR, et al. COX-2-PGE 2 signaling pathway contributes to hippocampal neuronal injury and cognitive impairment in PTZ-kindled epilepsy mice. Int. Immunopharmacol. 2020, 87: 106801.

10.1016/j.intimp.2020.106801
10.
JiangJXYangMSQuanYTherapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticusNeurobiol. Dis.201576126136

Jiang JX, Yang MS, Quan Y, et al. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol. Dis. 2015, 76: 126-136.

10.1016/j.nbd.2014.12.032
11.

Yu Y, Jiang JX. COX-2/PGE 2 axis regulates hippocampal BDNF/TrkB signaling via EP2 receptor after prolonged seizures. Epilepsia Open 2020, 5(3): 418-431.

12.
OliveiraMSFurianAFRoyesLFCyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizuresEpilepsy Res.20087911421

Oliveira MS, Furian AF, Royes LF, et al. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 2008, 79(1): 14-21.

10.1016/j.eplepsyres.2007.12.008
13.
DuYFKemperTQiuJGDefining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticusExpert Rev. Neurother201616212313010.1586/14737175.2016.1134322

Du YF, Kemper T, Qiu JG, et al. Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev. Neurother. 2016, 16(2): 123-130.

14.
BroekaartDWMAninkJJBaayenJCActivation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progressionEpilepsia201859101931194410.1111/epi.14550

Broekaart DWM, Anink JJ, Baayen JC, et al. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia. 2018, 59(10): 1931-1944.

15.
LöscherWPotschkaHSisodiyaSMDrug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment optionsPharmacol. Rev.202072360663810.1124/pr.120.019539

Löscher W, Potschka H, Sisodiya SM, et al. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020, 72(3): 606-638.

16.

Iori V, Frigerio F, Vezzani A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr. Opin. Pharmacol. 2016, 26: 118-123.

17.

Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018, 17(3): 279-288.

18.

Farmer WT, Murai K. Resolving astrocyte heterogeneity in the CNS. Front. Cell. Neurosci. 2017, 11: 300.

19.

Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018, 66(6): 1235-1243.

20.
HubbardJASzuJIYonanJMRegulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsyExp. Neurol.2016283Pt A8596

Hubbard JA, Szu JI, Yonan JM, et al. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp. Neurol. 2016, 283(Pt A): 85-96.

10.1016/j.expneurol.2016.05.003
21.
HamidSHMWhittamDSaviourMSeizures and encephalitis in myelin oligodendrocyte glycoprotein IgG disease vs aquaporin 4 IgG diseaseJAMA Neurol.2018751657110.1001/jamaneurol.2017.3196

Hamid SHM, Whittam D, Saviour M, et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein IgG disease vs aquaporin 4 IgG disease. JAMA Neurol. 2018, 75(1): 65-71.

22.

Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends. Mol. Med. 2018, 24(3): 257-277.

23.

França MER, Peixoto CA. cGMP signaling pathway in hepatic encephalopathy neuroinflammation and cognition. Int. Immunopharma. 2020, 79: 106082.

24.
PulimoodNSdos Santos Rodrigues JuniorWAtkinsonDAThe role of CREB, SRF, and MEF2 in activity-dependent neuronal plasticity in the visual cortexJ. Neurosci.2017372866286637

Pulimood NS, dos Santos Rodrigues Junior W, Atkinson DA, et al. The role of CREB, SRF, and MEF2 in activity-dependent neuronal plasticity in the visual cortex. J. Neurosci. 2017, 37(28): 6628-6637.

10.1523/JNEUROSCI.0766-17.2017
25.
GoelRBhatSAHanifKAngiotensin II receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-κB-mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive ratsMol. Neurobiol.20185521725173910.1007/s12035-017-0450-5

Goel R, Bhat SA, Hanif K, et al. Angiotensin II receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-κB-mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive rats. Mol. Neurobiol. 2018, 55(2): 1725-1739.

26.
LinTWHarwardSCHuangYZTargeting BDNF/TrkB pathways for preventing or suppressing epilepsyNeuropharmacology2020167107734

Lin TW, Harward SC, Huang YZ, et al. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology. 2020, 167: 107734.

10.1016/j.neuropharm.2019.107734
27.
Lima GiacobboBDoorduinJKleinHCBrain-derived neurotrophic factor in brain disorders: focus on neuroinflammationMol. Neurobiol.20195653295331210.1007/s12035-018-1283-6

Lima Giacobbo B, Doorduin J, Klein HC, et al. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol. Neurobiol. 2019, 56(5): 3295-3312.

28.
PennacchioPNoéFGnatkovskyVIncreased pCREB expression and the spontaneous epileptiform activity in a BCNU-treated rat model of cortical dysplasiaEpilepsia20155691343135410.1111/epi.13070

Pennacchio P, Noé F, Gnatkovsky V, et al. Increased pCREB expression and the spontaneous epileptiform activity in a BCNU-treated rat model of cortical dysplasia. Epilepsia. 2015, 56(9): 1343-1354.

29.
YuJDSwietekBProdduturADentate cannabinoid-sensitive interneurons undergo unique and selective strengthening of mutual synaptic inhibition in experimental epilepsyNeurobiol. Dis.2016892335

Yu JD, Swietek B, Proddutur A, et al. Dentate cannabinoid-sensitive interneurons undergo unique and selective strengthening of mutual synaptic inhibition in experimental epilepsy. Neurobiol. Dis. 2016, 89: 23-35.

10.1016/j.nbd.2016.01.013
30.
WuGFWangLKHongZHippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic ratsNeurol. Res.201739873374310.1080/01616412.2017.1325120

Wu GF, Wang LK, Hong Z, et al. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats. Neurol. Res. 2017, 39(8): 733-743.

31.
ChowJJensenMAminiHDissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disordersGenome Med.201911165

Chow J, Jensen M, Amini H, et al. Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders. Genome Med. 2019, 11(1): 65.

10.1186/s13073-019-0678-y
32.
XuKYLiuZYWangLKInfluence of hippocampal low-frequency stimulation on GABAA R α1, ICER and BNDF expression level in brain tissues of amygdala-kindled drug-resistant temporal lobe epileptic ratsBrain Res.20181698195203

Xu KY, Liu ZY, Wang LK, et al. Influence of hippocampal low-frequency stimulation on GABAA R α1, ICER and BNDF expression level in brain tissues of amygdala-kindled drug-resistant temporal lobe epileptic rats. Brain Res. 2018, 1698: 195-203.

10.1016/j.brainres.2018.08.013
33.
HildebrandMSGriffinNGDamianoJAMutations of the sonic hedgehog pathway underlie hypothalamic hamartoma with gelastic epilepsyAm. J. Hum. Genet.2016992423429

Hildebrand MS, Griffin NG, Damiano JA, et al. Mutations of the sonic hedgehog pathway underlie hypothalamic hamartoma with gelastic epilepsy. Am. J. Hum. Genet. 2016, 99(2): 423-429.

10.1016/j.ajhg.2016.05.031
34.
Cabrera-PastorABalzanoTHernández-RabazaVIncreasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic ratsBrain Behav. Immun.201869386398

Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, et al. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav. Immun. 2018, 69: 386-398.

10.1016/j.bbi.2017.12.013
35.
ZhuXJDubeyDBermudezCSuppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsyEpilepsia201556121870187810.1111/epi.13211

Zhu XJ, Dubey D, Bermudez C, et al. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia. 2015, 56(12): 1870-1878.

36.
ZhuXJHanXBlendyJADecreased CREB levels suppress epilepsyNeurobiol. Dis.2012451253263

Zhu XJ, Han X, Blendy JA, et al. Decreased CREB levels suppress epilepsy. Neurobiol. Dis. 2012, 45(1): 253-263.

10.1016/j.nbd.2011.08.009
37.
Cabrera-PastorALlansolaMMontoliuCPeripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implicationsActa Physiol.20192262e1327010.1111/apha.13270

Cabrera-Pastor A, Llansola M, Montoliu C, et al. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol. 2019, 226(2): e13270.

38.

Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018, 50: 257-284.

39.
Hernandez-RabazaVAgustiACabrera-PastorASildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanismsJ. Neuroinflammation201512195

Hernandez-Rabaza V, Agusti A, Cabrera-Pastor A, et al. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J. Neuroinflammation. 2015, 12: 195.

10.1186/s12974-015-0420-7
Journal of Neurorestoratology
Article number: 100006
Cite this article:
Li J, Shi D, Wang L, et al. Chronic neuroinflammation regulates cAMP response element-binding protein in the formation of drug-resistant epilepsy by activating glial cells. Journal of Neurorestoratology, 2022, 10(2): 100006. https://doi.org/10.1016/j.jnrt.2022.100006

669

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 24 January 2022
Revised: 09 March 2022
Accepted: 07 April 2022
Published: 11 June 2022
© 2022 The Authors. Published by Elsevier Ltd on behalf of Tsinghua University Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return