Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Ultrafine-grained (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2Zr2O7 high-entropy zirconates with single fluorite structure have been fabricated by high-pressure sintering of the self-synthesized nanopowders for the first time. The as-sintered samples exhibit a good microstructure with a grain size of 220 nm and a relative density of 96.8%, which yield excellent comprehensive mechanical properties with a high Vickers hardness of 12.5 GPa and a high fracture toughness of 3.4 MPa·m1/2. In addition, the as-sintered samples possess a good thermostability with the grain growth rate of 30 nm/h, and a low thermal conductivity of 1.57 W·m−1·℃−1 at room temperature. The superior mechanical and thermal properties are primarily attributed to the “high-entropy” and grain-refinement effects and good interface bonding.
Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP. Entropy-stabilized oxides. Nat Commun 2015;6:8485. https://doi.org/10.1038/ncomms9485.
Kumar A, Dragoe D, Berardan D, Dragoe N. Thermoelectric properties of highentropy rare-earth cobaltates. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.08.001.
Chen Z, Lin C, Zheng W, Jiang C, Zeng Y, Song X. Water vapor corrosion behaviors of high-entropy pyrosilicates. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.03.002.
Gild J, Zhang Y, Harrington T, Jiang S, Hu T, Quinn MC, Mellor WM, Zhou N, Vecchio K, Luo J. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 2016;6:37946. https://doi.org/10.1038/srep37946.
Liu D, Wen T, Ye B, Chu Y. Synthesis of superfine high-entropy metal diboride powders. Scripta Mater 2019;167:110-4. https://doi.org/10.1111/jace.16746.
Liu D, Liu H, Ning S, Ye B, Chu Y. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. J Am Ceram Soc 2019;102: 7071-6. https://doi.org/10.1016/j.scriptamat.2019.01.021.
Zhao P, Zhu J, Zhang Y, Shao G, Wang H, Li M, Liu W, Fan B, Xu H, Zhou Y, Zhang R. A novel high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B with superhardness and low thermal conductivity. Ceram Int 2020;17:26626-31. https://doi.org/10.1016/j.ceramint.2020.07.131.
Ye B, Wen T, Huang K, Wang C, Chu Y. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. J Am Ceram Soc 2019;102:4344-52. https://doi.org/10.1111/jace.16295.
Ye B, Wen T, Nguyen MC, Hao L, Wang C, Chu Y. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater 2019;170:15-23. https://doi.org/10.1016/j.actamat.2019.03.021.
Ye B, Wen T, Chu Y. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. J Am Ceram Soc 2020;103:500-7. https://doi.org/10.1111/jace.16725.
Wang F, Yan X, Wang T, Wu Y, Shao L, Nastasi M, Lu Y, Cui B. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater 2020;195:739-49. https://doi.org/10.1016/j.actamat.2020.06.011.
Sarkar A, Wang Q, Schiele A, Chellali MR, Bhattacharya SS, Wang D, Brezesinski T, Hahn H, Velasco L, Breitung B. High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater 2019;31:1806236. https://doi.org/10.1002/adma.201806236.
Zhang J, Yan J, Calder S, Zheng Q, Mcguire MA, Abernathy DL, Ren Y, Lapidus SH, Page K, Zheng H, Freeland JW, Budai JD, Hermann RP. Long range antiferromagnetic order in a rocksalt high entropy oxide. Chem Mater 2019;31:3705-11. https://doi.org/10.1021/acs.chemmater.9b00624.
Dąbrowa J, Stygar M, Mikuła A, Knapik A, Mroczka K, Tejchman W, Danielewski M, Martin M. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett 2018;216:32-6. https://doi.org/10.1016/j.matlet.2017.12.148.
Sharma Y, Musico BL, Gao X, Hua C, May AF, Herklotz A, Rastogi A, Mandrus D, Yan J, Lee HN, Chisholm MF, Keppens V, Ward TZ. Single-crystal high entropy perovskite oxide epitaxial films. Phy Rev Mater 2018;2:060404. https://doi.org/10.1103/PhysRevMaterials.2.060404.
Ren K, Wang Q, Shao G, Zhao X, Wang Y. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Mater 2020;178:382-6. https://doi.org/10.1016/j.scriptamat.2019.12.006.
Gild J, Samiee M, Braun JL, Harrington T, Vega H, Hopkins PE, Vecchio K, Luo J. High-entropy fluorite oxides. J Eur Ceram Soc 2018;38:3578-84. https://doi.org/10.1016/j.jeurceramsoc.2018.04.010.
Luo X, Luo L, Zhao X, Cai H, Duan S, Xu C, Huang S, Jin H, Hou S. Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties. J Eur Ceram Soc 2022;42:2391-9. https://doi.org/10.1016/j.jeurceramsoc.2021.12.080.
Zhao Z, Xiang H, Dai F, Peng Z, Zhou Y. La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J Mater Sci Technol 2019;35:2647-51. https://doi.org/10.1016/j.jmst.2019.05.054.
Zhu J, Meng X, Zhang P, Li Z, Xu J, Reece MJ, Gao F. Dual-phase rare-earthzirconate high-entropy ceramics with glass-like thermal conductivity. J Eur Ceram Soc 2021;41:2861-9. https://doi.org/10.1016/j.jeurceramsoc.2020.11.047.
Li F, Zhou L, Liu J, Liang Y, Zhang G. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J Adv Ceram 2019;8:576-82. https://doi.org/10.1007/s40145-019-0342-4.
Tu T, Liu J, Zhou L, Liang Y, Zhang G. Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material. J Eur Ceram Soc 2022;42:649-57. https://doi.org/10.1016/j.jeurceramsoc.2021.10.022.
Liu D, Shi B, Geng L, Wang Y, Xu B, Chen Y. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. J Adv Ceram 2022;11:961-73. https://doi.org/10.1007/s40145-022-0589-z.
Ma M, Yang X, Meng H, Zhao Z, He J, Chu Y. Nanocrystalline high-entropy hexaboride ceramics enable remarkable performance as thermionic emission cathodes. Fundam Res 2022. https://doi.org/10.1016/j.fmre.2022.04.010.
Ma M, Sun Y, Wu Y, Zhao Z, Ye L, Chu Y. Nanocrystalline high-entropy carbide ceramics with improved mechanical properties. J Am Ceram Soc 2021;105: 606-13. https://doi.org/10.1111/jace.18100.
Zhao P, Yu F, Wang B, Zhao H, Chen C, Wang D, Ying P, Wu Y, Li P, Zhang B, Liu B, Zhao Z, Hu W, Yu D, He J, Liu Z, Xu B, Tian Y. Porous bismuth antimony telluride alloys with excellent thermoelectric and mechanical properties. J Mater Chem 2021;9:4990-9. https://doi.org/10.1039/D0TA09795K.
Han Y, Yu R, Liu H, Chu Y. Synthesis of the superfine high-entropy zirconate nanopowders by polymerized complex method. J Adv Ceram 2021;11: 136-44. https://doi.org/10.1007/s40145-021-0522-x.
Ma M, Ye B, Han Y, Sun L, He J, Chu Y. High-pressure sintering of ultrafinegrained high-entropy diboride ceramics. J Am Ceram Soc 2020;103:6655-8. https://doi.org/10.1111/jace.17387.
Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 1981;64:533-8. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.
Zhao Z, Chen H, Xiang H, Dai F, Wang X, Xu W, Sun K, Peng Z, Zhou Y. (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: a defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3. J Mater Sci Technol 2020;40:5731-9. https://doi.org/10.1016/j.jmst.2019.08.018.
Zhou N, Hu T, Huang J, Luo J. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scripta Mater 2016;124:160-3. https://doi.org/10.1016/j.scriptamat.2016.07.014.
Sun R, Wei X, Hu W, Ying P, Wu Y, Wang L, Chen S, Zhang X, Ma M, Yu D, Wang L, Gao G, Xu B, Tian Y. Nanocrystalline cubic silicon carbide: a route to superhardness. Small 2022:2201212. https://doi.org/10.1002/smll.202201212.
Wollmershauser JA, Feigelson BN, Gorzkowski EP, Ellis CT, Goswami R, Qadri SB, Tischler JG, Kub FJ, Everett RK. An extended hardness limit in bulk nanoceramics. Acta Mater 2014;69:9-16. https://doi.org/10.1016/j.actamat.2014.01.030.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).