AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Dielectric materials for electrical energy storage

Guangzu Zhang1Shujun Zhang2Qing Wang3( )
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, And Engineering Research Center for Functional Ceramics MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
Institute of Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW, 2500, Australia
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

References

[1]
Li Q. Advanced dielectric materials for electrostatic capacitors. Printed in the UK by CPI group. Croydon: UK) Ltd; 2020.
[2]

Li H, Zhou Y, Liu Y, Li L, Liu Y, Wang Q. Dielectric polymers for high-temperature capacitive energy storage. Chem Soc Rev 2021;50:6369-400. https://doi.org/10.1039/d0cs00765j.

[3]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J, Zhang S. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108. https://doi.org/10.1016/j.pmatsci.2018.12.005.

[4]

Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017;29:1-7. https://doi.org/10.1002/adma.201701824.

[5]

Chen Z, Mao S, Ma L, Luo G, Feng Q, Cen Z, Toyohisa F, Peng X, Liu L, Zhou H, Hu C, Luo N. Phase engineering in NaNbO3 antiferroelectrics for high energy storage density. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.03.004.

[6]

Xie A, Fu J, Zuo R. Achieving stable relaxor antiferroelectric P phase in NaNbO3-based lead-free ceramics for energy-storage applications. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2021.11.012.

[7]

Jiang J, Li X, Li L, Guo S, Zhang J, Wang J, Zhu H, Wang Y, Zhang S. Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency. J Materiomics 2022;8:295-301. https://doi.org/10.1016/j.jmat.2021.09.007.

[8]

Joseph J, Cheng Z, Zhang S. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications. J Materiomics 2022. https://doi.org/10.1016/j.jeurceramsoc.2022.03.041.

[9]

Wu L, Tang L, Zhai Y, Zhang Y, Sun J, Hu D, Pan Z, Su Z, Zhang Y, Liu J. Significantly Enhanced Energy-storage Performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.01.003.

[10]

Zhang L, Jing R, Huang Y, Hu Q, Alikin D, Shur V, Gao J, Wei X, Zhang L, Liu G, Yan Y, Jin L. Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.01.007.

[11]

Sun N, Du J, Zhao Y, Lu C, Han P, Li Y, Zhang Q, Hao X. Flexible multilayer lead-free film capacitor with high energy storage performances via heterostructure engineering. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.02.007.

[12]

Liu C, Xie S, Bai H, Yan F, Fu T, Shen B, Zhai J. Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2022.03.001.

[13]

Shkuratov S, Lynch C. Ferroelectric materials for ultrahigh power density energy storage devices. J Materiomics 2022. https://doi.org/10.1016/j.jmat.2020.11.016.

Journal of Materiomics
Pages 1287-1289
Cite this article:
Zhang G, Zhang S, Wang Q. Dielectric materials for electrical energy storage. Journal of Materiomics, 2022, 8(6): 1287-1289. https://doi.org/10.1016/j.jmat.2022.04.001

394

Views

13

Crossref

13

Web of Science

13

Scopus

Altmetrics

Received: 30 March 2022
Published: 08 April 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return