AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Enhanced energy storage properties and antiferroelectric stability of Mn-doped NaNbO3-CaHfO3 lead-free ceramics: Regulating phase structure and tolerance factor

Yang Yina,1Jing-Ru Yua,1Yu-Cheng TangaAi-Zhen SongaHuan LiuaDong Yangb( )Jing-Feng Lib( )Lei Zhaoc( )Bo-Ping Zhanga( )
School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, China
School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
College of Physics Science and Technology, Hebei University, 071002, Baoding, China

1 These authors contributed equally.]]>

Show Author Information

Graphical Abstract

Abstract

NaNbO3-based ceramics usually show ferroelectric-like P-E loops at room temperature due to the irreversible transformation of the antiferroelectric orthorhombic phase to ferroelectric orthorhombic phase, which is not conducive to energy storage applications. Our previous work found that incorporating CaHfO3 into NaNbO3 can stabilize its antiferroelectric phase by reducing the tolerance factor (t), as indicated by the appearance of characteristic double P-E loops. Furthermore, a small amount of MnO2 addition effectively regulate the phase structure and tolerance factor of 0.94NaNbO3-0.06CaHfO3 (0.94NN-0.06CH), which can further improve the stability of antiferroelectricity. The XRD and XPS results reveal that the Mn ions preferentially replace A-sites and then B-sites as increasing MnO2. The antiferroelectric orthorhombic phase first increases and then decreases, while the t shows the reversed trend, thus an enhanced antiferroelectricity and the energy storage density Wrec of 1.69 J/cm3 at 240 kV/cm are obtained for 0.94NN-0.06CH-0.5%MnO2(in mass fraction). With the increase of Mn content to 1.0 % from 0.5 %, the efficiency increases to 81 % from 45 %, although the energy storage density decreases to 1.31 J/cm3 due to both increased tolerance factor and non-polar phase.

References

[1]

Chu B, Zhou X, Ren K, Neese B, Lin M. Science 2006;313: 334-6. https://doi.org/10.1126/science.1127798.

[2]

Li D, Lin Y, Yuan Q, Zhang M, Ma L. J. Materiomics 2020;6: 743-50. https://doi.org/10.1016/j.jmat.2020.06.005.

[3]

Yao Z, Song Z, Hao H, Yu Z, Cao M. Adv Mater 2017;29: 1600935-9648. https://doi.org/10.1002/adma.201601727.

[4]

Wang H, Liu Y, Yang T, Zhang S. Adv Funct Mater 2019;29: 1807321. https://doi.org/10.1002/adfm.201807321.

[5]

Wang X, Huan Y, Zhao P, Liu X, Wei T. Materiomics 2021;7: 780-9. https://doi.org/10.1016/j.jmat.2020.12.009.

[6]

Dang ZM, Yuan JK, Yao SH, Liao RJ. Adv Mater 2013;25: 6334-65. https://doi.org/10.1002/adma.201301752.

[7]

Wu S, Li W, Lin M, Burlingame Q, Chen Q. Adv Mater 2013;25: 1734-8. https://doi.org/10.1002/adma.201204072.

[8]

Gao J, Zhang Y, Zhao L, Li J-F. J Mater Chem A 2019;7: 2225-32. https://doi.org/10.1039/c8ta09353a.

[9]

Yang L, Kong X, Li F, Hao H, Li J-F. Prog Mater Sci 2019;102: 72-108. https://doi.org/10.1016/j.pmatsci.2018.12.005.

[10]

Dan Y, Xu H, Zou K, Zhang Q, He Y. Appl Phys Lett 2018;113: 063902. https://doi.org/10.1063/1.5044712.

[11]

Liu L, Knapp M, Ehrenberg H, Fang L, Fan H. J Eur Ceram Soc 2017;37: 1387-99. https://doi.org/10.1016/j.jeurceramsoc.2016.11.024.

[12]

Liu L, Knapp M, Ehrenberg H, Fang L, Schmitt LA. J Appl Crystallogr 2016;49: 574-84. https://doi.org/10.1107/s1600576716002909.

[13]

Liu L, Shi D, Fan L, Chen J, Li G. J Mater Sci Mater Electron 2015;26: 6592-8. https://doi.org/10.1007/s10854-015-3257-z.

[14]

Yan T, Sun X, Deng J, Liu S, Han F. Solid State Commun 2017;264: 1-5. https://doi.org/10.1016/j.ssc.2017.07.009.

[15]

Love GR. J Am Ceram Soc 1990;73: 323-8. https://doi.org/10.1111/j.1151-2916.1990.tb06513.x.

[16]

Song A, Song J, Lv Y, Liang L, Wang J. Mater Lett 2019;237: 278-81. https://doi.org/10.1016/j.matlet.2018.11.105.

[17]

Song A, Wang J, Song J, Zhang J, Li Z. J Eur Ceram Soc 2021;41: 1236-43. https://doi.org/10.1016/j.jeurceramsoc.2020.09.032.

[18]

Yang D, Gao J, Shu L, Zhang B-P, Li JF. J Mater Chem A 2020;8: 23724-37. https://doi.org/10.1039/d0ta08345c.

[19]

Lai D, Yao Z, You W, Gao B, Guo Q. J. Materiomics 2021. https://doi.org/10.1016/j.jmat.2021.04.001.

[20]

Dong X, Li X, Chen X, Chen H, Sun C. J. Materiomics 2021;7: 629-39. https://doi.org/10.1016/j.jmat.2020.11.016.

[21]

Guo H, Shimizu H, Randall CA. Appl Phys Lett 2015;107: 112904. https://doi.org/10.1063/1.4930067.

[22]

Shimizu H, Kobayashi K, Mizuno Y, Randall CA. J Am Ceram Soc 2014;97: 1791-6. https://doi.org/10.1111/jace.12815.

[23]

Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Dalton Trans 2015;44: 10763-72.

[24]

Guo H, Shimizu H, Mizuno Y, Randall CA. J Appl Phys 2015;117:214103. https://doi.org/10.1063/1.4921876.

[25]

Gao L, Guo H, Zhang S, Randall CA. Appl Phys Lett 2018;112:092905. https://doi.org/10.1063/1.5017697.

[26]

Liu Z, Lu J, Mao Y, Ren P, Fan H. J Eur Ceram Soc 2018;38:4939-45. https://doi.org/10.1016/j.jeurceramsoc.2018.07.029.

[27]

Qi H, Zuo R, Xie A, Fu J, Zhang D. J Eur Ceram Soc 2019;39:3703-9. https://doi.org/10.1016/j.jeurceramsoc.2019.05.043.

[28]

Gao L, Guo H, Zhang S, Randall CA. J Appl Phys 2016;120:204102. https://doi.org/10.1063/1.4968790.

[29]

Li Y, Guo Y, Zheng Q, Lam KH, Zhou W. Mater Res Bull 2015;68:92-9. https://doi.org/10.1016/j.materresbull.2015.03.052.

[30]

Dou M, Fu J, Zuo R. J Eur Ceram Soc 2018;38:3104-10. https://doi.org/10.1016/j.jeurceramsoc.2018.03.008.

[31]

Ye J, Wang G, Chen X, Cao F, Dong X. Appl Phys Lett 2019;114:122901. https://doi.org/10.1063/1.5080538.

[32]

Qi H, Zuo R. J Eur Ceram Soc 2019;39:2318-24. https://doi.org/10.1063/1.5080538.

[33]

Ng YS, Alexander S. Ferroelectrics 1983;51:81-6. https://doi.org/10.1080/00150198308009056.

[34]

Hejazi MM, Taghaddos E, Safari A. J Mater Sci 2013;48:3511-6. https://doi.org/10.1007/s10853-013-7144-9.

[35]

Jendrzejewska I, Knizek K, Kubacki J, Goraus J, Goryczka T. Mater Res Bull 2021;137:111174. https://doi.org/10.1016/j.materresbull.2020.111174.

[36]

Kang HB, Chang J, Koh K, Lin L, Cho YS. ACS Appl Mater Interfaces 2014;6: 10576-82. https://doi.org/10.1021/am502234q.

[37]

Fujimori A, Kimizuka N, Akahane T, Chiba T, Kimura S. Phys Rev B 1990;42: 7580. https://doi.org/10.1103/PhysRevB.42.7580.

[38]

Liu Q, Zhu FY, Zhao L, Wang K, Li JF. J Am Ceram Soc 2016;99:3670-6. https://doi.org/10.1111/jace.14412.

[39]

Fan X, Lin D, Zheng Q, Sun H, Wan Y. Phys Status Solidi 2012;209:2610-4. https://doi.org/10.1002/pssa.201228254.

[40]

Zhao L, Liu Q, Zhang S, Li J-F. J Mater Chem C 2016;4:8380-4. https://doi.org/10.1039/C6TC03289C.

[41]

Liu T, Ding A, He X, Zheng X, Qiu P. Integr Ferroelectr 2006;85:3-12. https://doi.org/10.1080/10584580601085503.

[42]

Rubio-Marcos F, Marchet P, Vendrell X, Romero J, Rémondière F. J Alloys Compd 2011;509:8804-11. https://doi.org/10.1016/j.jallcom.2011.06.080.

[43]

Luo B, Dong H, Wang D, Jin K. J Am Ceram Soc 2018;101:3460-7. https://doi.org/10.1111/jace.15528.

[44]

Wang T, Jin L, Li C, Hu Q, Wei X. J Am Ceram Soc 2015;98:559-66. https://doi.org/10.1111/jace.13325.

[45]

Wang Y, Cui J, Yuan Q, Niu Y, Bai Y. Adv Mater 2015;27:6658-63. https://doi.org/10.1002/adma.201503186.

[46]

Oku M, Hirokawa K. J Electron Spectrosc Relat Phenom 1975;7:465-73. https://doi.org/10.1016/0368-2048(75)85010-9.

[47]

Foord JS, Jackman RB, Allen GC. Philos Mag 2006;49:657-63. https://doi.org/10.1080/01418618408233293.

[48]

Hejazi M, Taghaddos E, Safari A. J Mater Sci 2013;48:3511-6. https://doi.org/10.1007/s10853-013-7144-9.

[49]
Li JF. Lead-free pielzoelectric materials. Weinheim: Wiley-VCH; 2021.
Journal of Materiomics
Pages 611-617
Cite this article:
Yin Y, Yu J-R, Tang Y-C, et al. Enhanced energy storage properties and antiferroelectric stability of Mn-doped NaNbO3-CaHfO3 lead-free ceramics: Regulating phase structure and tolerance factor. Journal of Materiomics, 2022, 8(3): 611-617. https://doi.org/10.1016/j.jmat.2021.11.013

377

Views

16

Crossref

22

Web of Science

22

Scopus

Altmetrics

Received: 23 September 2021
Revised: 02 November 2021
Accepted: 22 November 2021
Published: 25 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return