Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
By virtue of the excellent plasticity and tunable transport properties, Ag2S-based materials demonstrate an intriguing prospect for flexible or hetero-shaped thermoelectric applications. Among them, Ag2S1-xTex exhibits rich and interesting variations in crystal structure, mechanical and thermoelectric transport properties. However, Te alloying obviously introduces extremely large order-disorder distributions of cations and anions, leading to quite complicated crystal structures and thermoelectric properties. Detailed composition-structure-performance correlation of Ag2S1-xTex still remains to be established. In this work, we designed and prepared a series of Ag2S1-xTex (x = 0–0.3) materials with low Te content. We discovered that the monoclinic-to-cubic phase transition occurs around x = 0.16 at room temperature. Te alloying plays a similar role as heating in facilitating this monoclinic-to-cubic phase transition, which is analyzed based on the thermodynamic principles. Compared with the monoclinic counterparts, the cubic-structured phases are more ductile and softer in mechanical properties. In addition, the cubic phases show a degenerately semiconducting behavior with higher thermoelectric performance. A maximum zT = 0.8 at 600 K and bending strain larger than 20% at room temperature were obtained in Ag2S0.7Te0.3. This work provides a useful guidance for designing Ag2S-based alloys with enhanced plasticity and high thermoelectric performance.
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Nature 2004;432: 488-92.
Rogers JA, Someya T, Huang Y. Science 2010;327: 1603-7.
Wang Y, Liu G, Sheng M, Yu C, Deng Y. J Mater Chem A 2019;7: 1718-24.
Wang Y, Yang L, Shi XL, Shi X, Chen LD, Dargusch MS, et al. Adv Mater 2019;31: 1807916.
Yang S, Qiu P, Chen L, Shi X. Small Science 2021;1: 2100005.
Ding Y, Qiu Y, Cai K, Yao Q, Chen S, Chen L, et al. Nat Commun 2019;10: 841.
Kim S, We J, Cho B. Energy Environ Sci 2014;7: 1959-65.
Zhang Q, Sun YM, Xu W, Zhu DB. Adv Mater 2014;26: 6829-51.
Pan Y, Aydemir U, Grovogui JA, Witting IT, Hanus R, Xu YB, et al. Adv Mater 2018;30: 1802016.
Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Appl Phys Lett 2009;94: 102111.
Hu L, Zhu T, Liu X, Zhao X. Adv Funct Mater 2014;24: 5211-8.
Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Nature 2011;473: 66-9.
Heremans J, Jovovic V, Toberer E, Saramat A, Kurosaki K, Charoenphakdee A, et al. Science 2008;321: 554-7.
Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidman DN, et al. Nature 2012;489: 414-8.
Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, et al. Nat Mater 2018;17: 421-6.
Li G, An Q, Morozov S, Duan B, Goddard W, Zhang Q, et al. npj Comput Mater 2018;4: 44.
Wei T, Jin M, Wang Y, Chen H, Gao Z, Zhao K, et al. Science 2020;369: 542-5.
Han X. Science 2020;369: 509.
Zhang B, Wu H, Peng K, Shen X, Gong X, Zheng S, et al. Chin Phys B 2021;30: 078101.
Oshima Y, Nakamura A, Matsunaga K. Science 2018;360: 772-4.
Chen H, Wei T, Zhao K, Qiu P, Chen L, He J, et al. Infomat 2021;3: 22-35.
Wang T, Zhao K, Qiu P, Song Q, Chen L, Shi X. ACS Appl Mater Interfaces 2019;11: 12632-8.
Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, et al. Energy Environ Sci 2019;12: 2983-90.
Gao Z, Yang Q, Qiu P, Wei TR, Yang S, Xiao J, et al. Adv Energy Mater 2021;11: 2100883.
Liu J, Xing T, Gao Z, Liang J, Peng L, Xiao J, et al. Appl Phys Lett 2021;119: 121905.
He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, et al. Sci Adv 2020;6: eaaz8423.
Yang S, Gao Z, Qiu P, Liang J, Wei T, Deng T, et al. Adv Mater 2021;33: 2007681.
Liang X, Chen C. Acta Mater 2021;218: 117231.
Blochl PE. Phys Rev B 1994;50: 17953-79.
Kresse G, Hafner J. Phys Rev B 1994;49: 14251-69.
Kresse G, Furthmuller J. Phys Rev B 1996;54: 11169-86.
Kresse G, Furthmuller J. Comput Mater Sci 1996;6: 15-50.
Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996;77: 3865-8.
Tran F, Blaha P. Phys Rev Lett 2009;102: 226401.
Cava R, Reidinger F, Wuensch B. J Solid State Chem 1980;31: 69-80.
Sadanaga R, Sueno S. Mineral Mag 1967;5: 124-43.
Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, et al. Adv Sci 2018;5: 1700727.
Liu W, Yang L, Chen Z, Zou J. Adv Mater 2020;32: 1905703.
Caillat T, Borshchevsky A, Fleurial J. J Appl Phys 1996;80: 4442-9.
Zhou Y, Li X, Xi L, Yang J. J Materiomics 2021;7: 19-24.
Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Angew Chem Int Ed 2016;55: 6826-41.
Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, et al. Nat Mater 2012;11: 422-5.
Tan G, Hao S, Zhao J, Wolverton C, Kanatzidis MG. J Am Chem Soc 2017;139: 6467-73.
Zhao K, Qiu P, Shi X, Chen L. Adv Funct Mater 2019;30: 1903867.
Liu H, Yang J, Shi X, Danilkin SA, Yu D, Wang C, et al. J Materiomics 2016;2: 187-95.
Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Adv Mater 2017;29: 1605884.
Deng T, Wei T, Huang H, Song Q, Zhao K, Qiu P, et al. npj Comput Mater 2020;6: 81.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).