Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Gadolinium-doped ceria (GDC) interlayers are required to prevent the interfacial reaction between La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode and Y2O3-stabilized ZrO2 (YSZ) electrolyte in solid oxide fuel cells (SOFCs). However, it's difficult to prepare a thin and dense GDC interlayer on the sintered half-cell at a low temperature. In this study, the physical vapor deposition (PVD) method was employed to successfully manufacture dense GDC interlayers with the thickness of 1 μm. The influences of GDC sintering temperature (900 °C, 1000 °C and 1100 °C) on cell performance characteristics and degradation behavior were investigated. The cell with GDC interlayer sintered at 1100 °C showed the lowest degradation rate during the 216-h operation. The best stability was attributed to the most effective inhibition of Sr diffusion by the GDC interlayer, which was demonstrated by the almost unchanged Ohmic and polarization resistances during the aging stage and the negligible Sr enrichment at YSZ/GDC interface. Compared to the conventional screen-printed GDC interlayers (sintered above 1250 °C), the GDC interlayer prepared by the PVD method and sintered at 1100 °C was significantly denser and thinner, showing a promising application prospect due to its benefits for cell stability.
Santhanam S, Ullmer D, Wuillemin Z, Varkaraki E, Beetschen C, Antonetti Y, et al. Experimental analysis of a 25 kWe solid oxide fuel cell module for Co-generation of hydrogen and power ECS Trans 2019;91:159-66. https://doi.org/10.1149/09101.0159ecst.
Ballard A, Domanski T, Rees L, Nobbs C, Lawrence N, Heffer K, et al. Development of the 5kWe SteelCell® technology platform for stationary power and transport applications. ECS Trans 2019;91:117-22. https://doi.org/10.1149/09101.0117ecst.
Noponen M, Torri P, Göös J, Puranen J, Kaar H, Pylypko S, et al. Elcogen-next generation solid oxide cell and stack technology. ECS Trans 2019;91:91-7. https://doi.org/10.1149/09101.0091ecst.
Mai A, Grolig JG, Dold M, Vandercruysse F, Denzler R, Schindler B, et al. Progress in HEXIS’SOFC development. ECS Trans 2019;91:63-70. https://doi.org/10.1149/09101.0063ecst.
Vora SD, Jesionowski G, Williams MC. Overview of U.S. Department of energy office of fossil energy's solid oxide fuel cell program for FY2019. ECS Trans 2019;91:27-39. https://doi.org/10.1149/09101.0027ecst.
Hara D. Toward a hydrogen society-introduction of representative projects in Japan. ECS Trans 2019;91:3-7. https://doi.org/10.1149/09101.0003ecst.
Nakao T, Inoue S, Uenoyama S, Takuwa Y, Suzuki M. Progress of SOFC residential CHP system: over 50,000 Units market experience of osaka gas. ECS Trans 2019;91:43-9. https://doi.org/10.1149/09101.0043ecst.
Sumi H, Nakabayashi S, Kawada T, Uchiyama Y, Uchiyama N, Ichihara K. Demonstration of SOFC power sources for drones (UAVs; unmanned aerial vehicles). ECS Trans 2019;91:149-57. https://doi.org/10.1149/09101.0149ecst.
Coddet P, Amany ML, Vulliet J, Caillard A, Thomann AL. YSZ/GDC bilayer and gradient barrier layers deposited by reactive magnetron sputtering for solid oxide cells. Surf Coatings Technol 2019;357:103-13. https://doi.org/10.1016/j.surfcoat.2018.09.085.
Coddet P, Vulliet J, Richard C, Caillard A, Thomann A-L. Characteristics and properties of a magnetron sputtered gadolinia-doped ceria barrier layer for solid oxide electrochemical cells. Surf Coatings Technol 2018;339:57-64. https://doi.org/10.1016/j.surfcoat.2018.01.079.
Railsback J, Choi SH, Barnett SA. Effectiveness of dense Gd-doped ceria barrier layers for (La,Sr)(Co,Fe)O3 cathodes on Yttria-stabilized zirconia electrolytes. Solid State Ionics 2019;335:74-81. https://doi.org/10.1016/j.ssi.2019.02.020.
Zhang Q, Park B-K, Barnett S, Voorhees P. On the role of the zirconia/ceria interface in the degradation of solid oxide electrolysis cells. Appl Phys Lett 2020;117:123906. https://doi.org/10.1063/5.0016478.
Miguel-Perez V, Ouweltjes JP, Tarancon A, Torrell M, Bongiorno V, Wuillemin Z, et al. Degradation studies and Sr diffusion behaviour in anode supported cell after 3,000 h SOFC short stack testing. ECS Trans. 2015;68:1803-13. https://doi.org/10.1149/06801.1803ecst.
Wang F, Brito ME, Yamaji K, Cho DH, Nishi M, Kishimoto H, et al. Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system. Solid State Ionics 2014;262:454-9. https://doi.org/10.1016/j.ssi.2014.04.002.
Wang F, Nishi M, Brito ME, Kishimoto H, Yamaji K, Yokokawa H, et al. Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs). J Power Sources 2014;258:281-9. https://doi.org/10.1016/j.jpowsour.2014.02.046.
Lu Z, Darvish S, Hardy J, Templeton J, Stevenson J, Zhong Y. SrZrO3 formation at the interlayer/electrolyte interface during (La1-xSrx) 1-δCo1-yFeyO3 cathode sintering. J Electrochem Soc 2017;164:F3097-103. https://doi.org/10.1149/2.0141710jes.
Gao Z, Zenou VY, Kennouche D, Marks L, Barnett SA. Solid oxide cells with zirconia/ceria Bi-Layer electrolytes fabricated by reduced temperature firing. J Mater Chem A 2015;3:9955-64. https://doi.org/10.1039/c5ta01964h.
Choi H, Cho GY, Cha SW. Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. Int J Precis Eng Manuf - Green Technol 2014;1:95-9. https://doi.org/10.1007/s40684-014-0013-4.
Seok C, Moon J, Park M, Hong J, Kim H, Son JW, et al. Low-temperature co-sintering technique for the fabrication of multi-layer functional ceramics for solid oxide fuel cells. J Eur Ceram Soc 2016;36:1417-25. https://doi.org/10.1016/j.jeurceramsoc.2015.12.029.
Jang I, Kim S, Kim C, Lee H, Yoon H, Song T, et al. Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance. J Power Sources 2019;435:226776. https://doi.org/10.1016/j.jpowsour.2019.226776.
Wang G, Zhang Y, Han M. Densification of Ce0.9Gd0.1O2-δ interlayer to improve the stability of La0.6Sr0.4Co0.2Fe0.8 O3-δ/Ce0.9Gd0.1O2-δ interface and SOFC. J Electroanal Chem 2020;857:113591. https://doi.org/10.1016/j.jelechem.2019.113591.
Constantin G, Rossignol C, Briois P, Billard A, Dessemond L, Djurado E. Efficiency of a dense thin CGO buffer layer for solid oxide fuel cell operating at intermediate temperature. Solid State Ionics 2013;249-250:98-104. https://doi.org/10.1016/j.ssi.2013.07.004.
Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P. Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Meterialia 2000;48:4709-14.
Nicholas J, Dejonghe L. Prediction and evaluation of sintering aids for cerium gadolinium oxide. Solid State Ionics 2007;178:1187-94. https://doi.org/10.1016/j.ssi.2007.05.019.
Zhu T, Lin Y, Yang Z, Su D, Ma S, Han M, et al. Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells. J Power Sources 2014;261:255-63. https://doi.org/10.1016/j.jpowsour.2014.03.010.
Kleinlogel CM, Gauckler LJ. Mixed electronic-ionic conductivity of cobalt doped cerium gadolinium oxide. J Electroceramics 2000;5:231-43. https://doi.org/10.1023/A:1026583629995.
Han MF, Zhou S, Liu Z, Lei Z, Kang ZC. Fabrication, sintering and electrical properties of cobalt oxide doped Gd0.1Ce0.9O2-δ. Solid State Ionics 2011;192:181-4. https://doi.org/10.1016/j.ssi.2010.06.019.
Uhlenbruck S, Jordan N, Sebold D, Buchkremer HP, Haanappel VAC, Stöver D. Thin film coating technologies of (Ce,Gd)O2-δ interlayers for application in ceramic high-temperature fuel cells. Thin Solid Films 2007;515:4053-60. https://doi.org/10.1016/j.tsf.2006.10.127.
Fonseca FC, Uhlenbruck S, Nedéléc R, Buchkremer HP. Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells. J Power Sources 2010;195:1599-604. https://doi.org/10.1016/j.jpowsour.2009.09.050.
Kuo Y-L, Lee C, Chen Y-S, Liang H. Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering. Solid State Ionics 2009;180:1421-28. https://doi.org/10.1016/j.ssi.2009.08.016.
Nurk G, Vestli M, Möller P, Jaaniso R, Kodu M, Mändar H, et al. Mobility of Sr in gadolinia doped ceria barrier layers prepared using spray pyrolysis, pulsed laser deposition and magnetron sputtering methods. J Electrochem Soc 2016;163:F88-96. https://doi.org/10.1149/2.0531602jes.
Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stöver D, et al. Ce0.8Gd0.2O2-δ protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ionics 2008;179:919-23. https://doi.org/10.1016/j.ssi.2007.12.008.
Wu W, Liu Z, Zhao Z, Zhang X, Ou D, Tu B, et al. Gadolinia-doped ceria barrier layer produced by sputtering and annealing for anode-supported solid oxide fuel cells. Chinese J Catal 2014;35:1376-84. https://doi.org/10.1016/S1872-2067(14)60137-6.
Szász J, Wankmuller F, Wilde V, Störmer H, Gerthsen D, Menzler NH, et al. Nature and functionality of La 0.58 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ/Gd 0.2 Ce 0.8 O 2-δ/Y 0.16 Zr 0.84 O 2-δ interfaces in SOFCs. J Electrochem Soc 2018;165:F898-906. https://doi.org/10.1149/2.0031811jes.
Wilde V, Störmer H, Szász J, Wankmüller F, Ivers-Tiffée E, Gerthsen D. Gd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: effect of barrier layer sintering temperature on microstructure. ACS Appl Energy Mater 2018;1:6790-800. https://doi.org/10.1021/acsaem.8b00847.
Chen X, Ni W, Du X, Sun Z, Zhu T, Zhong Q, et al. Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing. J Mater Sci Technol 2019;35:695-701. https://doi.org/10.1016/j.jmst.2018.10.015.
Zhang Y, Zhu T, Sun Z, Han M. Performance and optimization of Ni/3 mol% Y2O3-ZrO2 anode supported SOFC. ECS Trans. 2019;91:1871-80. https://doi.org/10.1149/09101.1871ecst.
Riegraf M, Han F, Sata N, Costa R. Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide cells: physicochemical aspects. ACS Appl Mater Interfaces 2021. https://doi.org/10.1021/acsami.1c11175.
Morales M, Pesce A, Slodczyk A, Torrell M, Piccardo P, Montinaro D, et al. Enhanced performance of gadolinia-doped ceria diffusion barrier layers fabricated by pulsed laser deposition for large-area solid oxide fuel cells. ACS Appl Energy Mater 2018;1:1955-64. https://doi.org/10.1021/acsaem.8b00039.
Barfod R, Hagen A, Ramousse S, Hendriksen PV., Mogensen M. Break down of losses in thin electrolyte SOFCs. Fuel Cells 2006;6:141-5. https://doi.org/10.1002/fuce.200500113.
Rupp JLM, Gauckler LJ. Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ionics 2006;177:2513-8. https://doi.org/10.1016/j.ssi.2006.07.033.
Rupp JLM. Ionic diffusion as a matter of lattice-strain for electroceramic thin films. Solid State Ionics 2012;207:1-13. https://doi.org/10.1016/j.ssi.2011.09.009.
Barfod R, Mogensen M, Klemensø T, Hagen A, Liu Y-L, Vang Hendriksen P. Detailed characterization of anode-supported SOFCs by impedance spectroscopy. J Electrochem Soc 2007;154:B371. https://doi.org/10.1149/1.2433311.
Jacobsen T, Hendriksen PV, Koch S. Diffusion and conversion impedance in solid oxide fuel cells. Electrochim Acta 2008;53:7500-8. https://doi.org/10.1016/j.electacta.2008.02.019.
Leonide A, Sonn V, Weber A, Ivers-Tiffée E. Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J Electrochem Soc 2008;155:B36. https://doi.org/10.1149/1.2801372.
Horita T, Yamaji K, Sakai N, Xiong Y, Kato T, Yokokawa H, et al. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. J Power Sources 2002;106:224-30. https://doi.org/10.1016/S0378-7753(01)01017-5.
Develos-Bagarinao K, Budiman RA, Liu SS, Ishiyama T, Kishimoto H, Yamaji K. Evolution of cathode-interlayer interfaces and its effect on long-term degradation. J Power Sources 2020;453:227894. https://doi.org/10.1016/j.jpowsour.2020.227894.
Shi W, Jia C, Zhang Y, Lü Z, Han M. Differentiation and decomposition of solid oxide fuel cell electrochemical impedance spectra. Wuli Huaxue Xuebao/Acta Physico-Chimica Sin 2019;35:509-16. https://doi.org/10.3866/PKU.WHXB201806071.
Molin S, Karczewski J, Kamecki B, Mroziński A, Wang S-F, Jasiński P. Processing of Ce0.8Gd0.2O2-δ barrier layers for solid oxide cells: the effect of preparation method and thickness on the interdiffusion and electrochemical performance. J Eur Ceram Soc 2020;40:5626-33. https://doi.org/10.1016/j.jeurceramsoc.2020.06.006.
Wang Y, Lyu Z, Han M, Sun Z, Sun K. Initial-stage performance evolution of solid oxide fuel cells based on polarization analysis. ECS Trans. 2021;103:1261-69. https://doi.org/10.1149/10301.1261ecst.
Leonide A, Apel Y, Ivers-Tiffée E. SOFC modeling and parameter identification by means of impedance spectroscopy. ECS Trans. 2019;19:81-109. https://doi.org/10.1149/1.3247567.
Lyu Z, Li H, Wang Y, Han M. Performance degradation of solid oxide fuel cells analyzed by evolution of electrode processes under polarization. J Power Sources 2021;485:229237. https://doi.org/10.1016/j.jpowsour.2020.229237.
Sonn V, Leonide A, Ivers-Tiffée E. Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. J Electrochem Soc 2008;155:B675. https://doi.org/10.1149/1.2908860.
Shi W, Lyu Z, Han M. Distribution of relaxation time analysis of the initial performance degradation on Ni-YSZ anode support cells. ECS Trans. 2019;91:791-9. https://doi.org/10.1149/09101.0791ecst.
De Vero JC, Develos-Bagarinao K, Kishimoto H, Ishiyama T, Yamaji K, Horita T, et al. Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3-Δ thin film. J Power Sources 2018;377:128-35. https://doi.org/10.1016/j.jpowsour.2017.12.010.
Hong S, Yang H, Lim Y, Prinz FB, Kim Y-B. Grain-controlled gadolinia-doped ceria (GDC) functional layer for interface reaction enhanced low-temperature solid oxide fuel cells. ACS Appl Mater Interfaces 2019;11:41338-46. https://doi.org/10.1021/acsami.9b13999.
De Vero JC, Bagarinao KD-, Ishiyama T, Kishimoto H, Yamaji K, Horita T, et al. Effect of SrZrO 3 formation at LSCF-cathode/GDC-interlayer interfaces on the electrochemical properties of solid oxide fuel cells. ECS Trans. 2017;75:75-81. https://doi.org/10.1149/07542.0075ecst.
Lyu Q, Zhu T, Qu H, Sun Z, Sun K, Zhong Q, et al. Lower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layer. J Eur Ceram Soc 2021;41:5931-8. https://doi.org/10.1016/j.jeurceramsoc.2021.05.020.
Žic M, Subotić V, Pereverzyev S, Fajfar I. Solving CNLS problems using Levenberg-Marquardt algorithm: a new fitting strategy combining limits and a symbolic Jacobian matrix. J Electroanal Chem 2020;866. https://doi.org/10.1016/j.jelechem.2020.114171.
Koch S, Mogensen M, Hendriksen PV., Dekker N, Rietveld B. Electrode activation and passivation of solid oxide fuel cell electrodes. Fuel Cells 2006;6:117-22. https://doi.org/10.1002/fuce.200500111.
Koch S, Hendriksen PV., MMogensen, Liu YL, Dekker N, Rietveld B, et al. Solid oxide fuel cell performance under severe operating conditions. Fuel Cells 2006;6:130-6. https://doi.org/10.1002/fuce.200500112.
Jiang SP. Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: an AFM and EIS study. J Electrochem Soc 2015;162:F1119-28. https://doi.org/10.1149/2.0111510jes.
Matsui T, Li S, Inoue Y, Yoshida N, Muroyama H, Eguchi K. Degradation analysis of solid oxide fuel cells with (La,Sr)(Co,Fe)O 3-δ cathode/Gd 2 O 3 –CeO 2 interlayer/Y 2 O 3 –ZrO 2 electrolyte system: the influences of microstructural change and solid solution formation. ECS Trans. 2019;91:1247-56. https://doi.org/10.1149/09101.1247ecst.
Muramatsu M, Sato M, Terada K, Watanabe S, Yashiro K, Kawada T, et al. Shape deformation analysis of anode-supported solid oxide fuel cell by electro-chemo-mechanical simulation. Solid State Ionics 2018;319:194-202. https://doi.org/10.1016/j.ssi.2018.01.027.
Watanabe S, Sato K, Iguchi F, Yashiro K, Hashida T, Kawada T. Mechanical strength evaluation of YSZ, GDC and LSCF under SOFC operating conditions. ECS Trans. 2017;78:2181-90. https://doi.org/10.1149/07801.2181ecst.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).