AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhanced microwave dielectric properties of wolframite structured Zn1-xCuxWO4 ceramics with low sintering temperature

Qin ZhangaXiaoli TangaFangyi HuangaXiaohui WuaYuanxun Lia,bHua Sua,b,( )
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
Jiangxi Xingkang Electronic Technology Co, Ltd, Ganzhou, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

● Cu2+ substitution effectively lowered sintering temperature and contributed to the optimization of value and reduced the dielectric loss.

Abstract

The crystal structure, Raman vibration, chemical bond characteristics, and microwave dielectric properties of Zn1-xCuxWO4 (x = 0–0.15) ceramics prepared by a solid-state reaction were investigated by XRD refinement, Raman spectroscopy, P-V-L theory and XPS. According to the P-V-L theory, the properties of the W-O bond are stronger than those of the Zn-O bond, which makes a major contribution to the dielectric properties. The relative permittivity is mainly affected by the average bond ionicity, and the variations in the dielectric loss and τf are mainly attributed to the lattice energy and bond energy. XPS shows that the presence of Cu+ could produce oxygen vacancy defects, increasing the dielectric loss. Additionally, Raman spectra show that the increasing molecular polarizability causes the Raman shift to move to a low wavenumber, and the changes in Raman intensity and FWHM lead to a decrease in the degree of short-range ordering. Particularly, Zn0.97Cu0.03WO4 ceramics sintered at 925 ℃ showed satisfactory properties (εr = 14.20, tanδ = 1.473 × 10−4 at 9.087 GHz, and τf = −40 ppm/℃), which can potentially be applied to LTCC technology and indicate that Cu substitution can not only reduce the sintering temperature, but also optimize the dielectric properties.

References

[1]

Song X-Q, Lu W-Z, Lou Y-H, Chen T, Ta S-W, Fu Z-X, Synthesis W Lei. Lattice energy and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics. J Eur Ceram Soc 2020;40:3035–41. https://doi.org/10.1016/j.jeurceramsoc.2020.02.048.

[2]

Li C, Xiang H, Xu M, Tang Y, Fang L. Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. J Eur Ceram Soc 2018;38:1524–8. https://doi.org/10.1016/j.jeurceramsoc.2017.12.038.

[3]

Huang F, Su H, Li Y, Zhang H, Tang X. Low-temperature sintering and microwave dielectric properties of CaMg1−xLi2xSi2O6 (x = 0−0.3) ceramics. J Adv Ceram 2020;9:471–80.

[4]

Chen H-W, Su H, Zhang H-W, Zhou T-C, Zhang B-W, Zhang J-F, Tang X-l. Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics. Ceram Int 2014;40:14655–9. https://doi.org/10.1016/j.ceramint.2014.06.053.

[5]

Song X-Q, Du K, Li J, Lan X-K, Lu W-Z, Wang X-H, Lei W. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram Int 2019;45:279–86. https://doi.org/10.1016/j.ceramint.2018.09.164.

[6]

Zhang Q, Tang X, Li Y, jing Y, Su H. Influence of substituting Na+ for Mg2+ on the crystal structure and microwave dielectric properties of Mg1-xNa2xWO4 ceramics. J Eur Ceram Soc 2020;40:4503–8. https://doi.org/10.1016/j.jeurceramsoc.2020.05.053.

[7]

Du K, Song X-Q, Li J, Wu J-M, Lu W-Z, Wang X-C, Lei W. Optimised phase compositions and improved microwave dielectric properties based on calcium tin silicates. J Eur Ceram Soc 2019;39:340–5. https://doi.org/10.1016/j.jeurceramsoc.2018.10.005.

[8]

Song X-Q, Lu W-Z, Wang X-C, Wang X-H, Fan G-F, Muhammad R, Lei W. Sintering behaviour and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics. J Eur Ceram Soc 2018;38:1529–34. https://doi.org/10.1016/j.jeurceramsoc.2017.10.053.

[9]

Pullar RC, Farrah S, Alford NM, MgWO, ZnWO. NiWO4 and CoWO4 microwave dielectric ceramics. J Eur Ceram Soc 2007;27:1059–63. https://doi.org/10.1016/j.jeurceramsoc.2006.05.085.

[10]

Xiang H, Li C, Tang Y, Fang L. Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes. J Eur Ceram Soc 2017;37:3959–63. https://doi.org/10.1016/j.jeurceramsoc.2017.04.038.

[11]

Zuo R, Xu Y, Shi M, Li W, He L. A new series of low-temperature cofirable Li3Ba2La3(1-x)Y3x(MoO4)8 microwave dielectric ceramics. J Eur Ceram Soc 2018;38:4677–81. https://doi.org/10.1016/j.jeurceramsoc.2018.06.019.

[12]

Yuan X, Xue X, Jin F, Wang H. High-Q (Na1-xAgx)2WO4 (x = 0.1, 0.2) ceramics with ultra-low sintering temperature. J Eur Ceram Soc 2019;39:4156–9. https://doi.org/10.1016/j.jeurceramsoc.2019.06.003.

[13]

Butee S, Kulkarni AR, Prakash O, Aiyar RPRC, Wattamwar I, Bais D, Sudheendran K, Raju KCJ. Significant enhancement in quality factor of Zn2TiO4 with Cu-substitution. Mat Sci Eng B-Adv 2011;176:567–72. https://doi.org/10.1016/j.mseb.2011.01.013.

[14]

Lai Y, Tang X, Huang X, Zhang H, Liang X, Li J, Su H. Phase composition, crystal structure and microwave dielectric properties of Mg2−xCuxSiO4 ceramics. J Eur Ceram Soc 2018;38:1508–16. https://doi.org/10.1016/j.jeurceramsoc.2017.10.035.

[15]

Guo H-H, Zhou D, Pang L-X, Qi Z-M. Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O4 solid solution ceramics for LTCC applications. J Eur Ceram Soc 2019;39:2365–73. https://doi.org/10.1016/j.jeurceramsoc.2019.02.010.

[16]

Tang B, Yu S, Chen H, Zhang S, Zhou X. The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics. J Alloys Compd 2013;551:463–7. https://doi.org/10.1016/j.jallcom.2012.11.003.

[17]

Lai Y, Su H, Wang G, Tang X, Huang X, Liang X, Zhang H, Li Y, Huang K, Wang XR. Low-temperature sintering of microwave ceramics with high Qf values through LiF addition. J Am Ceram Soc 2019;102:1893–904. https://doi.org/10.1111/jace.16086.

[18]

Zhang P, Wu S, Xiao M. The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. J Eur Ceram Soc 2018;38:4433–9. https://doi.org/10.1016/j.jeurceramsoc.2018.05.040.

[19]

Rajesh Kumar B, Hymavathi B. X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. J Asian Ceram Soc 2018;5:94-103. https://doi.org/10.1016/j.jascer.2017.02.001.

[20]

Emil E, Gürmen S. Estimation of yttrium oxide microstructural parameters using the Williamson–Hall analysis. Mater Sci Tech-Lond 2018;34:1549–57. https://doi.org/10.1080/02670836.2018.1490857.

[21]

Hirthna S, Sendhilnathan. Enhancement in dielectric and magnetic properties of Mg2+ substituted highly porous super paramagnetic nickel ferrite nanoparticles with Williamson-Hall plots mechanistic view. Ceram Int 2017;43:15447–53. https://doi.org/10.1016/j.ceramint.2017.08.090.

[22]

Khorsand Zak A, Majid WH Abd, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci 2011;13:251–6. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.

[23]

Xiao K, Tang Y, Tian Y, Li C, Duan L, Fang L. Enhancement of the cation order and the microwave dielectric properties of Li2ZnTi3O8 through composition modulation. J Eur Ceram Soc 2019;39:3064–9. https://doi.org/10.1016/j.jeurceramsoc.2019.03.056.

[24]

Wu ZJ, Zhang SY. Semiempirical method for the evaluation of bond covalency in complex crystals. J Phys Chem A 1999;103:4270–4. https://doi.org/10.1021/jp982674q.

[25]

Yang H, Zhang S, Yang H, Zhang X, Li E. Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1-x)Zn0.15Nb0.3Ti0.55O2 ceramics. Inorg Chem 2018;57:8264–75. https://doi.org/10.1021/acs.inorgchem.8b00873.

[26]

Xia W-S, Li L-X, Ning P-F, Liao Q-W, Wong-Ng WK. Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1−xNbx)2O6 ceramics. J Am Ceram Soc 2012;95:2587–92. https://doi.org/10.1111/j.1551-2916.2012.05231.x.

[27]

Zhang P, Zhao Y, Haitao W. Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics. Dalton Trans 2015;44:16684–93. https://doi.org/10.1039/C5DT02164B.

[28]

Wang S, Zhang Y. Structure, bond characteristics and microwave dielectric properties of new A0.75Ti0.75Ta1.5O6 (A= Ni, Co, Zn and Mg) ceramics based on complex chemical bond theory. J Eur Ceram Soc 2020;40:1181–5. https://doi.org/10.1016/j.jeurceramsoc.2019.11.086.

[29]

Batsanov SS. Dielectric methods of studying the chemical bond and the concept of electronegativity. Russ Chem Rev 1982;51:1201–24.

[30]

Wang G, Zhang D, Li J, Gan G, Rao Y, Huang X, Yang Y, Shi L, Liao Y, Liu C, Jin L, Zhang H. Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Ti-doped Li3Mg2NbO6 ceramics. J Am Ceram Soc 2020;103:4321–32. https://doi.org/10.1111/jace.17091.

[31]

Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993;73:348–66.

[32]

Shao H, Liu Z, Jian G, Ma M, Li Y. Effects of Mn2+ doping on the microwave dielectric properties of Ti1−xCux/3Nb2x/3O2 ceramics. Ceram Int 2017;43:13895–900. https://doi.org/10.1016/j.ceramint.2017.07.115.

[33]

Tian Y, Tang Y, Xiao K, Li C, Duan L, Fang L. Crystal structure, Raman spectroscopy and microwave dielectric properties of Li1+xZnNbO4 (0 ≤ x ≤ 0.05) ceramics. J Alloys Compd 2019;777:1-7. https://doi.org/10.1016/j.jallcom.2018.08.244.

[34]

Lai Y, Su H, Wang G, Tang X, Liang X, Huang X, Li Y, Zhang H, Ye C, Wang XR. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. J Alloys Compd 2019;772:40–8. https://doi.org/10.1016/j.jallcom.2018.09.059.

[35]

Rousseau DL, Bauman RP, Porto SPS. Normal mode determination in crystals. J Raman Spectrosc 1981;10:253–90.

[36]

Liu Y, Wang H, Chen G, Zhou YD, Gu BY, Hu BQ. Analysis of Raman spectra of ZnWO4 single crystals. J Appl Phys 1988;64:4651–3. https://doi.org/10.1063/1.341245.

[37]

Guo J, Zhou D, Wang L, Wang H, Shao T, Qi ZM, Yao X. Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4-TiO2 (A = Ca, Sr). Dalton Trans 2013;42:1483–91. https://doi.org/10.1039/C2DT31878D.

[38]

Ning P-F, Li L-X, Zhang P, Xia W-S. Raman scattering, electronic structure and microwave dielectric properties of Ba([Mg1−xZnx]1/3Ta2/3)O3 ceramics. Ceram Int 2012;38:1391–8. https://doi.org/10.1016/j.ceramint.2011.09.018.

Journal of Materiomics
Pages 1309-1317
Cite this article:
Zhang Q, Tang X, Huang F, et al. Enhanced microwave dielectric properties of wolframite structured Zn1-xCuxWO4 ceramics with low sintering temperature. Journal of Materiomics, 2021, 7(6): 1309-1317. https://doi.org/10.1016/j.jmat.2021.02.011

73

Views

20

Crossref

20

Web of Science

21

Scopus

Altmetrics

Received: 24 December 2020
Revised: 26 January 2021
Accepted: 17 February 2021
Published: 27 February 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return